Advertisement

Inflammation in Age-Related Macular Degeneration

  • Ema OzakiEmail author
  • Matthew Campbell
  • Anna-Sophia Kiang
  • Marian Humphries
  • Sarah L. Doyle
  • Peter Humphries
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 801)

Abstract

Age-related macular degeneration (AMD) is the leading cause of legal blindness in elderly individuals in the developed world, affecting 30–50 million people worldwide. AMD primarily affects the macular region of the retina that is responsible for the majority of central, color and daytime vision. The presence of drusen, extracellular protein aggregates that accumulate under the retinal pigment epithelium (RPE), is a major pathological hallmark in the early stages of the disease. The end stage ‘dry’ and ‘wet’ forms of the disease culminate in vision loss and are characterized by focal degeneration of the RPE and cone photoreceptors, and choroidal neovascularization (CNV), respectively. Being a multifactorial and genetically heterogeneous disease, the pathophysiology of AMD remains unclear, yet, there is ample evidence supporting immunological and inflammatory processes. Here, we review the recent literature implicating some of these immune processes in human AMD and in animal models.

Keywords

Age-related macular degeneration Inflammation Drusen Immune cells Chemokine signaling 

Abbreviations

AMD

Age-related macular degeneration

RPE

Retinal pigment epithelium

CNV

Choroidal neovascularization

CEP

Carboxyethylpyrrole

BRB

Blood retinal barrier

MSA

Mouse serum albumin

IL

Interleukin

CCDKO

Ccl2/Cx3cr1 double knockout

Crb1

Crumbs-like 1

DAMPs

Danger-associated molecular patterns

NLRs

Nod-like receptors

NLRP3

NLR family, pyrin domain containing 3

References

  1. 1.
    Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Patel N, Ohbayashi M, Nugent AK, Ramchand K, Toda M, Chau KY et al (2005) Circulating anti-retinal antibodies as immune markers in age-related macular degeneration. Immunology 115:422–430PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L et al (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Xu H, Chen M, Forrester JV (2009) Para-inflammation in the aging retina. Prog Retin Eye Res 28:348–368PubMedCrossRefGoogle Scholar
  5. 5.
    Zhou J, Pham L, Zhang N, He S, Gamulescu MA, Spee C et al (2005) Neutrophils promote experimental choroidal neovascularization. Mol Vis 11:414–424PubMedGoogle Scholar
  6. 6.
    Rutar MV, Natoli RC, Provis JM (2012) Small interfering RNA-mediated suppression of Ccl2 in Muller cells attenuates microglial recruitment and photoreceptor death following retinal degeneration. J Neuroinflammation 9:221PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9:1390–1397PubMedCrossRefGoogle Scholar
  8. 8.
    Apte RS, Richter J, Herndon J, Ferguson TA (2006) Macrophages inhibit neovascularization in a murine model of age-related macular degeneration. PLoS Med 3:e310PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Raoul W, Auvynet C, Camelo S, Guillonneau X, Feumi C, Combadière C et al (2010) CCL2/CCR2 and CX3CL1/CX3CR1 chemokine axes and their possible involvement in age-related macular degeneration. J Neuroinflammation 7:87PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Jonas JB, Tao Y, Neumaier M, Findeisen P (2010) Monocyte chemoattractant protein 1, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1 in exudative age-related macular degeneration. Arch Ophthalmol 128:1281–1286PubMedCrossRefGoogle Scholar
  11. 11.
    Combadière C, Feumi C, Raoul W, Keller N, Rodéro M, Pézard A et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Chan CC, Ross RJ, Shen D, Ding X, Majumdar Z, Bojanowski CM et al (2008) Ccl2/Cx3cr1-deficient mice: an animal model for age-related macular degeneration. Ophthalmic Res 40:124–128PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMedCrossRefGoogle Scholar
  14. 14.
    Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA et al (2012) The rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Luhmann UF, Lange CA, Robbie S, Munro PM, Cowing JA, Armer HE et al (2012) Differential modulation of retinal degeneration by Ccl2 and Cx3cr1 chemokine signalling. PLoS One 7:e35551PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18:791–798PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Giganti M, Beer PM, Lemanski N, Hartman C, Schartman J, Falk N (2010) Adverse events after intravitreal infliximab (Remicade). Retina 30:71–80PubMedCrossRefGoogle Scholar
  18. 18.
    Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR et al (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Matsumura N, Kamei M, Tsujikawa M, Suzuki M, Xie P, Nishida K (2012) Low-dose lipopolysaccharide pretreatment suppresses choroidal neovascularization via IL-10 induction. PLoS One 7:e39890PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Ema Ozaki
    • 1
    • 2
    • 3
    Email author
  • Matthew Campbell
    • 1
    • 2
    • 3
  • Anna-Sophia Kiang
    • 1
    • 2
    • 3
  • Marian Humphries
    • 1
    • 2
    • 3
  • Sarah L. Doyle
    • 2
    • 2
    • 3
  • Peter Humphries
    • 1
    • 2
    • 3
  1. 1.Ocular Genetics Unit, Smurfit Institute of GeneticsTrinity College DublinDublinIreland
  2. 2.Department of Clinical Medicine, School of MedicineTrinity College DublinDublinIreland
  3. 3.National Childrens Research CentreOur Ladys Childrens HospitalDublin 12Ireland

Personalised recommendations