Nanoceria and Thioredoxin Regulate a Common Antioxidative Gene Network in tubby Mice

  • Xue Cai
  • Junji Yodoi
  • Sudipta Seal
  • James F. McGinnis
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (volume 801)


Oxidative stress is a node common to the causes and effects of various ocular diseases. We have shown that thioredoxin has neuroprotective effects on tubby photoreceptors. We also demonstrated that nanoceria (cerium oxide nanoparticles), which are direct antioxidants, have long-term effects on prevention of retinal degeneration in tubby mice. Here, using commercially available PCR array plates, we surveyed the regulation in expression of 89 oxidative stress-associated genes in the eyes of P12 tubby mice which are either intravitreally injected with nanoceria or in which the Trx gene is overexpressed. Our data demonstrate that nanoceria and Trx regulate the same group of genes associated with antioxidative stress and antioxidant defense.


Tubby mouse Nanoceria Thioredoxin Oxidative stress and antioxidant defense PCR array 





Apoptosis signal kinase 1


Mitogen-activated protein kinases


Cerium oxide nanoparticles


Postnatal day 7


Wild type


Institutional Animal Care and Use Committee


Nuclear factor erythroid 2-related factor


Small interfering RNA


Reactive oxygen species


Intercellular adhesion molecule 1


Human microvascular endothelial cells




Cysteine residue


Wingless/Intergration, Wg/Int




Retinal pigment epithelium


Basic leucine zipper


Algorithm for the Reconstruction of Accurate Cellular Networks


Context Likelihood of Relatedness


  1. 1.
    Collet JF, Messens J (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid Redox Signal 13:1205–1216PubMedCrossRefGoogle Scholar
  2. 2.
    Nakamura H, Hoshino Y, Okuyama H, Matsuo Y, Yodoi J (2009) Thioredoxin 1 delivery as new therapeutics. Adv Drug Deliv Rev 61:303–309PubMedCrossRefGoogle Scholar
  3. 3.
    Kong L, Zhou X, Li F, Yodoi J, McGinnis J, Cao W (2010) Neuroprotective effect of overexpression of thioredoxin on photoreceptor degeneration in Tubby mice. Neurobiol Dis 38:446–455PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150PubMedCrossRefGoogle Scholar
  5. 5.
    Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S et al (2011) Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis 42:514–523PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Cai X, Sezate SA, Seal S, McGinnis JF (2012) Sustained protection against photoreceptor degeneration in tubby mice by intravitreal injection of nanoceria. Biomaterials 33:8771–8781PubMedCrossRefGoogle Scholar
  7. 7.
    Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47PubMedCrossRefGoogle Scholar
  8. 8.
    Dong A, Shen J, Krause M, Akiyama H, Hackett SF, Lai H et al (2006) Superoxide dismutase 1 protects retinal cells from oxidative damage. J Cell Physiol 208:516–526PubMedCrossRefGoogle Scholar
  9. 9.
    Hashizume K, Hirasawa M, Imamura Y, Noda S, Shimizu T, Shinoda K et al (2008) Retinal dysfunction and progressive retinal cell death in SOD1-deficient mice. Am J Pathol 172:1325–1331PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282–11287PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Lubos E, Kelly NJ, Oldebeken SR, Leopold JA, Zhang YY, Loscalzo J et al (2011) Glutathione peroxidase-1 deficiency augments proinflammatory cytokine-induced redox signaling and human endothelial cell activation. J Biol Chem 286:35407–35417PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wood ZA, Schroder E, Robin Harris J, Poole LB (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28:32–40PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher AB (2011) Peroxiredoxin 6: a bifunctional enzyme with glutathione peroxidase and phospholipase A(2) activities. Antioxid Redox Signal 15:831–844PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Funato Y, Miki H (2007) Nucleoredoxin, a novel thioredoxin family member involved in cell growth and differentiation. Antioxid Redox Signal 9:1035–1057PubMedCrossRefGoogle Scholar
  15. 15.
    Funato Y, Miki H (2010) Redox regulation of Wnt signalling via nucleoredoxin. Free Radic Res 44:379–388PubMedCrossRefGoogle Scholar
  16. 16.
    Hackam AS (2005) The Wnt signaling pathway in retinal degenerations. IUBMB Life 57:381–388PubMedCrossRefGoogle Scholar
  17. 17.
    Rex TS, Tsui I, Hahn P, Maguire AM, Duan D, Bennett J et al (2004) Adenovirus-mediated delivery of catalase to retinal pigment epithelial cells protects neighboring photoreceptors from photo-oxidative stress. Hum Gene Ther 15:960–967PubMedCrossRefGoogle Scholar
  18. 18.
    Taylor RC, Acquaah-Mensah G, Singhal M, Malhotra D, Biswal S (2008) Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress. PLoS Comput Biol 4:e1000166PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2014

Authors and Affiliations

  • Xue Cai
    • 1
  • Junji Yodoi
    • 2
  • Sudipta Seal
    • 3
  • James F. McGinnis
    • 1
    • 4
    • 5
    • 6
  1. 1.Department of Ophthalmology, Dean McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of Biological Responses, Institute for Virus ResearchKyoto UniversityKyotoJapan
  3. 3.Materials Science and Engineering, Advanced Materials Processing Analysis Center and Nanoscience Technology CenterUniversity of Central FloridaOrlandoUSA
  4. 4.Department of Cell BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  5. 5.Neuroscience CenterUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  6. 6.Department of Ophthalmology, Dean McGee Eye InstituteUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA

Personalised recommendations