Digital Concept Mapping for Formative Assessment

  • Heiko KrabbeEmail author


Concept maps are widely used as assessment tool in research projects but do not seem to be often used for diagnostic purposes in school practice. Their evaluation is regarded to be too time consuming and of lower reliability compared to written tests. Therefore, different computer-based approaches are reviewed which have the opportunity to improve the reliability and to reduce the effort of evaluation. Their options for formative assessment on an individual and class level are discussed with the intention to foster achievement through diagnostic feedback. Finally, ideas how to enhance the available software solutions are derived. For this chapter especially research on digital concept mapping published in the German language has been reviewed in order to make this body of knowledge accessible to the international community


Digital concept mapping Structural and semantic measures Formative assessment Visual analysis Modal maps 



I thank Dirk Ifenthaler from Open Universities Australia for the creation of modal maps and the calculation of the semantic matching indices with his software AKOVIA. Also, I would like to acknowledge Siv Ling Ley and Hans Fischer from the University of Duisburg-Essen, Germany, for their collaborative work.


  1. Acton, W., Johnson, P., & Goldsmith, T. (1994). Structural knowledge assessment: comparison of referent structures. Journal of Educational Psychology, 86(2), 303–311.CrossRefGoogle Scholar
  2. Anderson, L., & Krathwohl, D. (2001). A taxonomy for learning, teaching and assessing – a revision of Bloom’s taxonomy of educational objectives. New York: Longman.Google Scholar
  3. Ballstaedt, S.-P., Mandl, H., Schnotz, W., & Tergan, S.-O. (1989). Texte verstehen – Texte gestalten. München: Urban & Schwarzenberg.Google Scholar
  4. Behrendt, H., Dahncke, H., & Reiska, P. (2000). Einsatz und computergestützte Auswertung von Concept Maps mit modalen Netzen und Bereichsdiagrammen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 117–146). Berlin: Logos.Google Scholar
  5. Bonato, M. (1990). Wissensstrukturierung mittels Struktur-Lege-Techniken: Eine graphentheoretische Analyse von Wissensnetzen. Frankfurt: Lang.Google Scholar
  6. Borgatti, S. P., & Everett, M. G. (2005). A graph-theoretic perspective on centrality. Social Networks, 28(4), 1–19.Google Scholar
  7. Brandes, U., & Erlebach, T. (Eds.). (2005). Network analysis. New York: Springer.Google Scholar
  8. Costa, L. d. F., Rodrigues, F. A., Travieso, G., & Villas Boas, P. R. (2007). Characterization of complex networks: A survey of measurements. Advances in Physics, 56(1), 167–242.CrossRefGoogle Scholar
  9. Dansereau, D. F., Collins, K. W., McDonald, B. A., Holley, C. F., Garland, J., Diekhoff, G., et al. (1979). Development and evaluation of a learning strategy training program. Journal of Educational Psychology, 71, 64–73.CrossRefGoogle Scholar
  10. Eckert, A. (2000). Die Netzwerk-Elaborierungs-Technik (NET) – Ein computerunterstütztes Verfahren zur Diagnose komplexer Wissensstrukturen. In H. Mandl & F. Fischer (Eds.), Wissen sichtbar machen – Wissensmanagement mit Mapping-Techniken (pp. 138–157). Göttingen: Hofgrefe.Google Scholar
  11. Fischler, H., & Peuckert, J. (2000). Concept Mapping in Forschungszusammenhängen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 1–22). Berlin: Logos.Google Scholar
  12. Friege, G., & Lind, G. (2000). Begriffsnetze und Expertise. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 147–178). Berlin: Logos.Google Scholar
  13. Fürstenau, B., Trojahner, I., & Oldenbürger, H.-A. (2009). Übereinstimmungen und Unterschiede von semantischen Netzwerken als Repräsentationen komplexen Wissens. In D. Münk, T. Deißinger, & R. Tenberg (Eds.), Forschungserträge aus der Berufs- und Wirtschaftspädagogik (pp. S. 117–129). Opladen u. Farmington Hills: Barbara Budrich.Google Scholar
  14. Fürstenau, B., & Trojahner, I. (2005). Prototypische Netzwerke als Ergebnis struktureller Inhaltsanalysen. In P. Gonon, F. Klauser, R. Nickolaus, & R. Huisinga (Eds.), Kompetenz, Kognition und neue Konzepte der beruflichen Bildung (S) (pp. 191–202). Opladen: Leske + Budrich.CrossRefGoogle Scholar
  15. Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London: Routledge.Google Scholar
  16. Helmke, A. (2009). Unterrichtsqualität und Lehrerprofessionalität – Diagnose, Evaluation und Verbesserung des Unterrichts. Seelze-Velber: Kallmeyer.Google Scholar
  17. Hoede, C. (1978). A new status score for actors on a social network. Twente University of Technology, Dept. of applied Mathematics (Internal reports).Google Scholar
  18. Ifenthaler, D. (2009). Model-based feedback for improving expertise and expert performance. Technology, Instruction, Cognition and Learning, 7(2), 83–101.Google Scholar
  19. Ifenthaler, D. (2010a). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58, 81–97. doi: 10.1007/s11423-008-9087-4.CrossRefGoogle Scholar
  20. Ifenthaler, D. (2010b). Scope of graphical indices in educational diagnostics. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 213–234). New York: Springer.CrossRefGoogle Scholar
  21. Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it. Tracking the development of cognitive structures over time. Instructional Science, 39(1), 41–61. doi: 10.1007/s11251-009-9097-6.Google Scholar
  22. Kinchin, I. M. (2000). Concept mapping in biology. Journal of Biological Education, 34(2), 61–68.CrossRefGoogle Scholar
  23. Lambiotte, J. G., Dansereau, D. F., Cross, D. R., & Reynolds, S. B. (1989). Multirelational semantic maps. Educational Psychology Review, 1(4), 331–367.CrossRefGoogle Scholar
  24. Ley, S. L., Krabbe, H., & Fischer, H. E. (2012). Convergent validity: Concept maps and competence test for students’ diagnosis in physics. Proceedings of the fifth international conference on concept mapping, Vol. 1, (pp. 149–155). Valetta, Malta. Retrieved 15 October, 2012, from
  25. Lüthjohann, F., & Parchmann, I. (2011). Konzeptverständnis ermittel. Concept Mapping als Diagnoseinstrument im NaWi-Unterricht an Regional- und Gemeinschaftsschulen. Naturwissenschaften im Unterricht Chemie, 22(124/125), 76–81.Google Scholar
  26. Novak, J., & Gowin, B. (1984). Learning how to learn. New York: Cambridge University Press.CrossRefGoogle Scholar
  27. MaNet (2012). Retrieved 15 October, 2012, from
  28. McClure, J., Sonak, B., & Suen, H. (1999). Concept map assessment of classroom learning: Reliability, validity and logistical practicality. Journal of Research in Science Teaching, 36(4), 475–492.CrossRefGoogle Scholar
  29. Peuckert, J., & Fischler, H. (2000). Concept Maps als Diagnose- und Auswertungsinstrument in einer Studie zur Stabilität und Ausprägung von Schülervorstellungen. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 91–116). Berlin: Logos.Google Scholar
  30. Piaget, J. (1976). Die Äquilibration der kognitiven Strukturen. Stuttgart: Klett.Google Scholar
  31. Pirnay-Dummer, P., & Ifenthaler, D. (2010). Automated knowledge visualization and assessment. In D. Ifenthaler, P. Pirnay-Dummer, & N. M. Seel (Eds.), Computer-based diagnostics and systematic analysis of knowledge (pp. 77–115). New York: Springer.CrossRefGoogle Scholar
  32. Rice, D. C., Ryan, J. M., & Samson, S. M. (1998). Using concept maps to assess student learning in the science classroom: must different methods compete? Journal of Research in Science Teaching, 35(10), 1103–1127.CrossRefGoogle Scholar
  33. Royer, R., & Royer, J. (2004). Comparing hand drawn and computer generated concept mapping. Journal of Computers in Mathematics and Science Teaching, 23(1), 67–81.Google Scholar
  34. Ruiz-Primo, M. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. Revista Electrónica de Investigación Educativa (Online Journal), 2(1), 29–52. Retrieved 15 October, 2012, from
  35. Ruiz-Primo, M., Schultz, S., Li, M., & Shavelson, R. (2001). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38(2), 260–278.CrossRefGoogle Scholar
  36. Ruiz-Primo, M., & Shavelson, R. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569–600.CrossRefGoogle Scholar
  37. Schanze, S. & Grüß-Niehaus, T. (2008). Supporting comprehension in chemistry education - The effect of computer generated and progressive concept mapping. Proceedings of the third international conference on concept mapping, Vol. 2, (pp. 595–602). Tallin, Estonia & Helsinki, Finland. Retrieved 15 October, 2012, from
  38. Schecker, H., & Klieme, E. (2000). Erfassung physikalischer Kompetenz durch Concept-Mapping-Verfahren Concept. In H. Fischler & J. Peuckert (Eds.), Concept Mapping in fachdidaktischen Forschungsprojekten der Physik und Chemie (pp. 23–56). Berlin: Logos.Google Scholar
  39. Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Münster: Waxmann.Google Scholar
  40. Strautmane, M. (2012). Concept map-based knowledge-assessment tasks and their scoring criteria: An overview. Proceedings of the fifth international conference on concept mapping, Vol. 1, (pp. 80–88) Valetta, Malta. Retrieved 15 October, 2012, from
  41. Tversky, A. (1977). Features of similarity. Psychological review, 84(4), 327–253.CrossRefGoogle Scholar
  42. Weber, S. (1994). Vorwissen in der betriebswirtschaftlichen Ausbildung. Wiesbaden: Deutscher Universitätsverlag.CrossRefGoogle Scholar
  43. Wikipedia (2012). List of concept- and mind-mapping software. Retrieved 15 October, 2012, from

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of Duisburg-EssenEssenGermany

Personalised recommendations