Solution-Processed Organic Photovoltaics

  • Claudia N. Hoth
  • Pavel Schilinsky
  • Stelios A. Choulis
  • Srinivasan Balasubramanian
  • Christoph J. Brabec
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

The technology of organic solar cells has matured to an extent that commercialization of first products has already started. However, with the first products pushing into the market, the research community realizes that a qualified product requires more than only high efficiency and good stability. Cost is of course as important as efficiency and lifetime, but to achieve high productivity, multiple technologic challenges have still to be solved. To reduce production costs, printing of functional layers from solution has evolved to a promising manufacturing technology for flexible organic electronics. Current processing of organic photovoltaic devices is mainly based on traditional methods like spin coating or doctor blading. However, these techniques have several disadvantages such as the incompatibility with a roll-to-roll setup and the processing of only small areas at laboratory scale. Enormous benefits in the manufacturing of organic photovoltaics are achieved by using low-cost roll-to-roll capable technologies including screen printing, spray coating, inkjet printing, gravure/flexographic printing and curtain/slot die coating. This review will shed some light on the role and importance of production technologies for organic photovoltaics and give an update on the most recent achievements in the field.

Keywords

Organic solar cells OPV Printing Coating Polymer Fullerene Bulk heterojunction Device fabrication Lifetime 

References

  1. 1.
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401:685CrossRefGoogle Scholar
  2. 2.
    Brown AR, Pomp A, Hart CM, de Leeuw DM (1995) Logic Gates Made from Polymer Transistors and Their Use in Ring Oscillators. Science 270:972CrossRefGoogle Scholar
  3. 3.
    Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS (eds) (2003) Organic photovoltaics: concepts and realization. Springer series in materials science, vol 60. Springer, LondonGoogle Scholar
  4. 4.
    Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310(5474):462–465CrossRefGoogle Scholar
  5. 5.
    Kapur V, Kemmerle R, Bansal A, Haber J, Schmitzberger J, Le P, Guevarra D, Kapur V, Stempien T (2008) Manufacturing of ‘ink based’ CIGS solar cells/modules. Conference record 33rd IEEE photovoltaic specialists conference, IEEE, Piscataway, NJGoogle Scholar
  6. 6.
    Sang B, Adurodija F, Taylor M, Lim A, Taylor J, Chang Y, McWilliams S, Oswald R, Stanbery BJ, Van Hest M, Nekuda J, Miedaner A, Curtis C, Leisch J, Ginley D (2008) Low cost copper indium gallium selenide by the FASST® process. Conference record 33rd IEEE photovoltaic specialists conference, IEEE, Piscataway, NJGoogle Scholar
  7. 7.
    Reyes-Reyes M, Kim K, Carroll DL (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl Phys Lett 87:083506CrossRefGoogle Scholar
  8. 8.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv Funct Mater 15:1617CrossRefGoogle Scholar
  9. 9.
    Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864CrossRefGoogle Scholar
  10. 10.
    Mühlbacher D, Scharber MC, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec CJ (2006) High Photovoltaic Performance of a Low-Bandgap Polymer. Adv Mater 18:2884CrossRefGoogle Scholar
  11. 11.
    Zhu Z, Waller D, Gaudiana R, Morana M, Mühlbacher D, Scharber MC, Brabec CJ (2007) Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications. Macromolecules 40:1981CrossRefGoogle Scholar
  12. 12.
    Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500CrossRefGoogle Scholar
  13. 13.
    Soci C, Hwang IW, Moses D, Zhu Z, Waller D, Gaudiana R, Brabec CJ, Heeger AJ (2007) Photoconductivity of a Low-Bandgap Conjugated Polymer. Adv Funct Mater 17:632CrossRefGoogle Scholar
  14. 14.
    Morana M, Wegscheider M, Bonanni A, Kopidakis N, Shaheen S, Scharber MC, Zhu Z, Waller D, Gaudiana R, Brabec CJ (2008) Bipolar charge transport in PCPDTBT-PCBM bulk-heterojunctions for photovoltaic applications. Adv Funct Mater 18:1757–1766CrossRefGoogle Scholar
  15. 15.
    NREL certificate Konarka, 8.29 % PCE (thickness > 200 nm, device area 1.031 cm2) under ASTM G173 global spectrum, 17 November 2010Google Scholar
  16. 16.
    Blayo A, Pineaux B (2005) Printing Processes and their Potential for RFID Printing. Joint sOc-EUSAI conference, GrenobleGoogle Scholar
  17. 17.
    Konarka technologies, hompage www.konarka.com
  18. 18.
    Yu G, Heeger AJ (1995) Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions. J Appl Phys 78:4510CrossRefGoogle Scholar
  19. 19.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor- Acceptor Heterojunctions. Science 270:1789CrossRefGoogle Scholar
  20. 20.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841CrossRefGoogle Scholar
  21. 21.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85CrossRefGoogle Scholar
  22. 22.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology. Adv Funct Mater 15:1617CrossRefGoogle Scholar
  23. 23.
    Konarka homepage (www.konarka.com), press release 19 May 2009, NREL certificate 6.4 % PCE
  24. 24.
    Brabec CJ, Padinger F, Hummelen JC, Janssen RA, Sariciftci NS (1999) Realization of Large Area Flexible Plastic Solar Cells Based on Conjugated Polymers and Fullerenes. Synth Metals 102:861CrossRefGoogle Scholar
  25. 25.
    Padinger F, Brabec CJ, Fromherz T, Hummelen JC, Sariciftci NS (2000) Fabrication of Large Area Photovoltaic Devices Containing various blends of Polymer & Fullerene Derviatives by Using the Doctor Blade Technique. Optoelectron Rev 8(4):280Google Scholar
  26. 26.
    Schilinsky P, Waldauf C, Brabec CJ (2006) Performance analysis of printed organic solar cells. Adv Funct Mater 16:1669CrossRefGoogle Scholar
  27. 27.
    Chang Y-H, Tseng S-R, Chen C-Y, Meng H-F, Chen E-C, Horng S-F, Hsu C-S (2009) Polymer solar cell by blade coating. Org Electron 10(5):741–746CrossRefGoogle Scholar
  28. 28.
    Waldauf C, Schilinsky P, Hauch JA, Brabec CJ (2004) Material and device concepts for organic photovoltaics: towards competitive efficiencies. Thin Solid Films 451–452:503–507CrossRefGoogle Scholar
  29. 29.
    Schilinsky P, Waldauf C, Hauch JA, Brabec CJ (2004) Simulation of light intensity dependent current characteristics of polymer solar cells. J Appl Phys 95:5CrossRefGoogle Scholar
  30. 30.
    Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ (2006) Physics of organic bulk heterojunction devices for photovoltaic applications. J Appl Phys 99:104503CrossRefGoogle Scholar
  31. 31.
    Shaheen SE, Radspinner R, Peyghambarian N, Jabbour GE (2001) Fabrication of bulk heterojunction plastic solar cells by screen printing. Appl Phys Lett 79:2996CrossRefGoogle Scholar
  32. 32.
    Krebs FC, Alstrup J, Spanggaard H, Larsen K, Kold E (2004) Production of large-area polymer solar cells by industrial silk screen printing, lifetime considerations and lamination with polyethyleneterephthalate. Sol Energy Mater Sol Cells 83:293CrossRefGoogle Scholar
  33. 33.
    Krebs FC, Spanggard H, Kjaer T, Biancardo M, Alstrup J (2007) Large area plastic solar cell modules. Mater Sci Eng B 138:106CrossRefGoogle Scholar
  34. 34.
    Aernouts T, Vanlaeke P, Poortmans J, Heremans P (2005) Polymer solar cells: screen-printing as a novel deposition technique. Mater Res Soc Symp Proc 836, art. no. L3.9, 81Google Scholar
  35. 35.
    Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L (2004) Printable anodes for flexible organic solar cell modules. Thin Solid Films 451–452:22CrossRefGoogle Scholar
  36. 36.
    Krebs FC (2008) Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol Energy Mater Sol Cells 92:715–726CrossRefGoogle Scholar
  37. 37.
    Ishikawa T, Nakamura M, Fujita K, Tsutsui T (2004) Preparation of organic bulk heterojunction photovoltaic cells by evaporative spray deposition from ultradilute solution. Appl Phys Lett 84:2424CrossRefGoogle Scholar
  38. 38.
    Mo XL, Mizokuro T, Mochizuki H, Tanigaki N, Hiraga T (2005) Polymer Solar Cell Prepared by a Novel Vacuum Spray Method. Jpn J Appl Phys, Part 1, 44: 656Google Scholar
  39. 39.
    Vak D, Kim S, Jo J, Oh S, Na S, Kim J, Kim D (2007) Fabrication of organic bulk heterojunction solar cells by a spray deposition method for low-cost power generation. Appl Phys Lett 91:081102CrossRefGoogle Scholar
  40. 40.
    Green R, Morfa A, Ferguson AJ, Kopidakis N, Rumbles G, Shaheen SE (2008) Performance of bulk heterojunction photovoltaic devices prepared by airbrush spray deposition. Appl Phys Lett 92:033301CrossRefGoogle Scholar
  41. 41.
    Steirer KX, Reese MO, Rupert BL, Kopidakis N, Olson DC, Collins RT, Ginley DS (2009) Ultrasonic Spray Deposition for Production of Organic Solar Cells. Sol Energy Mater Sol Cells 93:447–453CrossRefGoogle Scholar
  42. 42.
    Girotto C, Rand BP, Genoe J, Heremans P (2009) Exploring spray coating as a deposition technique for the fabrication of solution-processed solar cells. Sol Energy Mater Sol Cells 93:454–458CrossRefGoogle Scholar
  43. 43.
    Hoth C (2009) Ink Formulations for Organic Photovoltaics and their Processing with Printing and Coating Technologies. Carl von Ossietzky Universität Oldenburg, Fakultät V, EHF, PhD thesisGoogle Scholar
  44. 44.
    Hoth CN, Choulis SA, Schilinsky P, Brabec CJ (2007) High Photovoltaic Performance of Inkjet Printed Polymer:Fullerene Blends. Adv Mater 19:3973CrossRefGoogle Scholar
  45. 45.
    Hoth CN, Steim R, Schilinsky P, Choulis SA, Tedde SF, Hayden O, Brabec CJ (2009) Topographical and morphological aspects of spray coated organic photovoltaics. Org Electron 10:587–593CrossRefGoogle Scholar
  46. 46.
    Hau SK, Yip H-L, Leong K, Jen AK-Y (2009) Spray coating of silver nanoparticle electrodes for inverted polymer solar cells. Org Electron 10:719–723CrossRefGoogle Scholar
  47. 47.
    Girotto C, Rand BP, Steudel S, Genoe J, Heremans P (2009) Nanoparticle-based, spray-coated silver top contacts for efficient polymer solar cells. Org Electron 10:735–740CrossRefGoogle Scholar
  48. 48.
    Gamota DR, Brazis P, Kalyanasundaram K, Zhang J (2004) Printed Organic and Molecular Electronics. Kluwer Academic Publishers, T. Claypole, pp 320–322Google Scholar
  49. 49.
    Calvert P (2001) Inkjet Printing for Materials and Devices. Chem Mater 13:3299–3305CrossRefGoogle Scholar
  50. 50.
    Liu Y, Varahramyan K, Cui T (2005) Low-Voltage All-Polymer Field-Effect Transistor Fabricated Using an Inkjet Printing Technique. Macromol Rapid Commun 26:1955–1959CrossRefGoogle Scholar
  51. 51.
    Kim D, Jeong S, Lee S, Park BK, Moon J (2007) Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515:7692–7696CrossRefGoogle Scholar
  52. 52.
    Song DH, Choi MH, Kim JY, Jang J (2007) Process optimization of organic thin-film transistor by ink-jet printing of DH4T on plastic. Appl Phys Lett 90:053504CrossRefGoogle Scholar
  53. 53.
    Mannerbro R, Ranlöf M, Robinson N, Forchheimer R (2008) Inkjet printed electrochemical organic electronics. Synth Metals 158:556–560CrossRefGoogle Scholar
  54. 54.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. Science 290:2123CrossRefGoogle Scholar
  55. 55.
    Kawase T, Sirringhaus H, Friend RH, Shimoda T (2001) Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits. Adv Mater 13:1601CrossRefGoogle Scholar
  56. 56.
    Kawase T, Shimoda T, Newsome C, Sirringhaus H, Friend RH (2003) Inkjet printing of polymer thin film transistors. Thin Solid Films 438:279–287CrossRefGoogle Scholar
  57. 57.
    Xia Y, Friend RH (2006) Polymer bilayer structure via inkjet printing. Appl Phys Lett 88:163508CrossRefGoogle Scholar
  58. 58.
    Xia Y, Friend RH (2005) Controlled phase separation of polyfluorene blends via inkjet printing. Macromolecules 38:6466–6471CrossRefGoogle Scholar
  59. 59.
    Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet Printing of Light-Emitting Polymer Displays. MRS Bull pp 821–827Google Scholar
  60. 60.
    Shah VG, Wallace DB (2004) Low-cost Solar Cell Fabrication by Drop-on-Demand Ink-jet Printing. Proceedings of IMAPS 37th annual international symposium on microelectronics, Long Beach, CA, 14–18 Nov 2004, pp 1Google Scholar
  61. 61.
    Marin V, Holder E, Wienk MM, Tekin E, Kozodaev D, Schubert US (2005) Ink-Jet Printing of Electron Donor/Acceptor Blends: Towards Bulk Heterojunction Solar Cells. Macromol Rapid Commun 26:319–324CrossRefGoogle Scholar
  62. 62.
    Aernouts T, Aleksandrov T, Girotto C, Genoe J, Poortmans J (2008) Polymer based organic solar cells using ink-jet printed active layers. Appl Phys Lett 92:033306CrossRefGoogle Scholar
  63. 63.
    Hoth CN, Schilinsky P, Choulis SA, Brabec CJ (2008) Printing highly efficient organic solar cells. Nano Lett 8:2806–2813CrossRefGoogle Scholar
  64. 64.
    Hoth CN, Choulis SA, Schilinsky P, Brabec CJ (2009) On the effect of poly(3-hexylthiophene) regioregularity on inkjet printed organic solar cells . J Mater Chem 19(30):5398–5405CrossRefGoogle Scholar
  65. 65.
    Nie Z, Kumacheva E (2008) Patterning surfaces with functional polymers. Nature Mater p 7Google Scholar
  66. 66.
    Tuomikoski M, Suhonen R (2006) Technologies for Polymer Electronics. Proceedings of TPE06, 2nd international symposium technologies for polymer electronics, Rudolstadt, vol 83Google Scholar
  67. 67.
    Yin X, Kumar S (2006) Flow visualization of the liquid-emptying process in scaled-up gravure grooves and cells. Chem Eng Sci 61:1142–1152Google Scholar
  68. 68.
    Ding JM, De la Fuente Vornbrock A, Ting C, Subramanian V (2009) Patternable polymer bulk heterojunction photovoltaic cells on plastic by rotogravure printing. Sol Energy Mater Sol Cells 93:459–464CrossRefGoogle Scholar
  69. 69.
    Krebs FC (2009) Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells 93:394–412CrossRefGoogle Scholar
  70. 70.
    Hübler AC, Kempa H (2008) Flexo printing in organic electronics. In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics. Wiley VCH, New YorkGoogle Scholar
  71. 71.
    Santurri P, Chemsultants, Inc., (2007) Coating methods for producing polymer films & membranes 3rd MEA Manufacturing symposium, Dayton, OhioGoogle Scholar
  72. 72.
    Schultheis K, Blankenburg L, Sensfuss S, Schrödner M (2007) Polymer photo-voltaics: first steps to large scale R2R-production using wet coating techniques. Proceedings of the Cintelliq conference, FrankfurtGoogle Scholar
  73. 73.
    Schrödner M, Schultheis K, Blankenburg L, Schache H, Sensfuss S (2008) Reel-to-reel film coating technique for production of functional layers for polymer photovoltaics and electronics. International symposium TPE08, RudolstadtGoogle Scholar
  74. 74.
    Blankenburg L, Schultheis K, Schache H, Sensfuss S, Schrödner M (2009) Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulkheterojunction polymer solar cells. Sol Energy Mater Sol Cells 93:476–483CrossRefGoogle Scholar
  75. 75.
    Tipnis R, Bernkopf J, Jia S, Krieg J, Li S, Storch M, Laird D (2009) Large-area organic photovoltaic module - fabrication and performance. Sol Energy Mater Sol Cells 93:442–446CrossRefGoogle Scholar
  76. 76.
    Hauch JA, Schilinsky P, Choulis SA, Childers R, Biele M, Brabec CJ (2008) Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime. Sol Energy Mater Sol Cells 92:727–731CrossRefGoogle Scholar
  77. 77.
    Hauch JA, Schilinsky P, Choulis SA, Rajoelson S, Brabec CJ (2008) The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl Phys Lett 93:103306CrossRefGoogle Scholar
  78. 78.
    Schuller S, Schilinsky P, Hauch JA, Brabec CJ (2004) Determination of the degradation constant of bulk heterojunction solar cells by accelerated lifetime measurements. Appl Phys A 79:37CrossRefGoogle Scholar
  79. 79.
    Derbyshire K (2003) The future of organic semiconductors. Pira International, SurreyGoogle Scholar
  80. 80.
    Frost & Sullivan (2004) Security technology—North American trends and developments in video surveillance D288Google Scholar
  81. 81.
    Dennler G, Brabec CJ (2008) In: Brabec CJ, Dyakonov V, Scherf U (eds) Organic photovoltaics: Materials, device physics & manufacturing technologies. Organic photovoltaics. Wiley VCH Google Scholar
  82. 82.
    Press release, Konarka Homepage (www.konarka.com), Eröffnung der New Bedford Produktionsanlage, 2008
  83. 83.
    Konarka homepage (www.konarka.com), power plastics, products and applications

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Claudia N. Hoth
    • 1
  • Pavel Schilinsky
    • 1
  • Stelios A. Choulis
    • 2
  • Srinivasan Balasubramanian
    • 3
  • Christoph J. Brabec
    • 4
  1. 1.Konarka Technologies GmbHNürnbergGermany
  2. 2.Department of Mechanical Engineering and Materials Science and EngineeringCyprus University of TechnologyLimassolCyprus
  3. 3.Konarka Technologies Inc.LowellUSA
  4. 4.Institute Materials for Electronics and Energy Technology (I-MEET)Friedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations