Glioma pp 95-108 | Cite as

Immunotherapeutic Approach with Oligodeoxynucleotides Containing CpG Motifs (CpG-ODN) in Malignant Glioma

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 746)

Abstract

Bacterial DNA and synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODNs) are strong activators of both innate and specific immunity, driving the immune response towards the Th1 phenotype. In cancer patients, CpG-ODNs can be used to activate the innate immunity and trigger a tumor-specific immune response. Several clinical trials are on-going worldwide in various cancers. In this chapter, we will focus on the potential applications of CpG-ODNs in glioma. So far, CpG-ODN has mainly been used by intratumoral injections. Indeed, human gliomas display a locally invasive pattern of growth and rarely metastasize, making local treatment clinically relevant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tokunaga T, Yamamoto H, Shimada S et al. Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization and antitumor activity. J Natl Cancer Inst 1984; 72:955–962.PubMedGoogle Scholar
  2. 2.
    Kuramoto E, Watanabe N, Iwata D et al. Changes of host cell infiltration into Meth A fibrosarcoma tumor during the course of regression induced by injections of a BCG nucleic acid fraction. Int J Immunopharmacol 1992; 14:773–782.PubMedCrossRefGoogle Scholar
  3. 3.
    Krieg AM, Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374:546–549.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhao Q, Temsamani J, Iadarola PL et al. Effect of different chemically modified oligodeoxynucleotides on immune stimulation. Biochem Pharmacol 1996; 51:173–182.PubMedCrossRefGoogle Scholar
  5. 5.
    Cornélie S, Hoebeke J, Schacht AM et al. Direct evidence that toll-like receptor (TRL9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif regognition. J Biol Chem 2004; 279(15):15124–15129.PubMedCrossRefGoogle Scholar
  6. 6.
    Medzhitov R, Preston-Hurlburt P, Janeway CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388:394–397.PubMedCrossRefGoogle Scholar
  7. 7.
    Leifer CA, Kennedy MN, Mazzoni A et al. TRL9 is localized in the endoplasmic reticulum prior to stimulation. J Immunol 2004; 173(2):1179–1183.PubMedGoogle Scholar
  8. 8.
    Latz E, Verma A, Visintin A et al. Ligang-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 2007; 8(7):772–779.PubMedCrossRefGoogle Scholar
  9. 9.
    Hornung V, Rothenfusser S, Britsch S et al. Quantitative expression of toll-like receptor 1-10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 2002; 168:4531–4537.PubMedGoogle Scholar
  10. 10.
    Henault M, Lee LN, Evans GF et al. The human Burkitt lymphoma cell line Namalwa represents a homogenous cell system characterized by high levels of Toll-like receptor 9 and activation by CpG oligonucleotides. J Immunol Methods 2005; 300:93–99.PubMedCrossRefGoogle Scholar
  11. 11.
    Jego G, Bataille R, Geffroy-Luseau A et al. Pathogen-associated molecular patterns are growth and survival factors for human myeloma cells through Toll-Like receptors. Leukemia 2006; 20(6):1130–1137.PubMedCrossRefGoogle Scholar
  12. 12.
    Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61(3): 195–204.PubMedCrossRefGoogle Scholar
  13. 13.
    Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709–760.PubMedCrossRefGoogle Scholar
  14. 14.
    Stacey KJ, Sweet MJ, Hume DA. Macrophages ingest and are activated by bacterial DNA. J Immunol 1996; 157:2116–2122.PubMedGoogle Scholar
  15. 15.
    Klinman DM, Yi AK, Beaucage SL et al. CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12 and interferon gamma. Proc Natl Acad Sci USA 1996; 93:2879–2883.PubMedCrossRefGoogle Scholar
  16. 16.
    Sparwasser T, Koch ES, Vabulas RM et al. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 1998; 28:2045–2054.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho HJ, Takabayashi K, Cheng PM et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 2000; 18:509–514.PubMedCrossRefGoogle Scholar
  18. 18.
    Klinman DM, Verthelyi D, Takeshita F et al. Immune recognition of foreign DNA: a cure for bioterrorism? Immunity 1999; 11:123–129.PubMedCrossRefGoogle Scholar
  19. 19.
    Kline JN, Waldschmidt TJ, Businga TR et al. Modulation of airway inflammation by CpG oligodeoxynucleotides in a murine model of asthma. J Immunol 1998; 160:2555–2559.PubMedGoogle Scholar
  20. 20.
    Vollmer J, Weeranta R, Payette P et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol 2004; 34(1):251–262.PubMedCrossRefGoogle Scholar
  21. 21.
    Hartmann G, Weeratna RD, Ballas ZK et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000; 164:1617–1624.PubMedGoogle Scholar
  22. 22.
    Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci 2001; 98:9237–9242.PubMedCrossRefGoogle Scholar
  23. 23.
    Carpentier AF, Auf G, Delattre JY. CpG-oligonucleotides for cancer immunotherapy: review of the literature and potential applications in malignant glioma. Front Biosci 2003; 8:115–127.CrossRefGoogle Scholar
  24. 24.
    Dix AR, Brooks WH, Roszman TL et al. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100:216–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66(6):3294–3302.PubMedCrossRefGoogle Scholar
  26. 26.
    El Andaloussi A, Sonabend AM, Han Y et al. Stimulation of TLR9 with CpG ODN enhances apoptosis of glioma and prolongs the survival of mice with experimental brain tumors. Glia 2006; 54:526–535.PubMedCrossRefGoogle Scholar
  27. 27.
    Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T-cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10:942–949.PubMedCrossRefGoogle Scholar
  28. 28.
    Golgher D, Jones E, Powrie F et al. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur J Immunol 2002; 32:3267–3275.PubMedCrossRefGoogle Scholar
  29. 29.
    Carpentier AF, Chen L, Maltonti F et al. Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res 1999; 59:5429–5432.PubMedGoogle Scholar
  30. 30.
    Auf G, Carpentier AF, Chen L et al. Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen. Clin Cancer Res 2001; 7:3540–3543.PubMedGoogle Scholar
  31. 31.
    Carpentier AF, Xie J, Mokhtari K et al. Successful treatment of intracranial gliomas in at by oligodeoxynucleotides containing CpG motifs. Clin Cancer Res 2000; 6:2469–2473.PubMedGoogle Scholar
  32. 32.
    Grauer OM, Molling JW, Bennink E et al. TRL ligands in the local treatment of established intracerebral murine gliomas. J Immunol 2008; 181(10):6720–6729.PubMedGoogle Scholar
  33. 33.
    Ilvesaro JM, Merrell MA, Li L et al. Toll-like receptor 9 mediates CpG oligonucleotide—induced cellular invasion. Mol Cancer Res 2008; 6(10):1534–1543.PubMedCrossRefGoogle Scholar
  34. 34.
    Kawarada Y, Ganss R, Garbi N et al. NK-and CD (+) T-cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynucleotides. J Immunol 2001; 167(9):5247–5253.PubMedGoogle Scholar
  35. 35.
    Wooldridge JE, Ballas Z, Krieg AM et al. Immunostimulatory oligodeoxynucleotides containing CpG motifs enhance the efficacy of monoclonal antibody therapy of lymphoma. Blood 1997; 89(9):2994–2998.PubMedGoogle Scholar
  36. 36.
    Takeshita S, Takeshita F, Haddad DE et al. Activation of microglia and astrocytes by CpG oligodeoxynucleotides. Neuroreport 2001; 12:3029–3032.PubMedCrossRefGoogle Scholar
  37. 37.
    Meng Y, Kujas M, Marie Y et al. Expression of TLR9 within human glioblastoma. J Neurooncol 2008; 88:19–25.PubMedCrossRefGoogle Scholar
  38. 38.
    Carpentier A, Laigle-Donadey F, Zohar S et al. Phase 1 trial of CpG ODN for patients with recurrent glioblastoma. Neurol Oncol 2006; 8(1):60–66.CrossRefGoogle Scholar
  39. 39.
    Gupta K, Cooper C. A review if the role of CpG oligodeoxynucleotides as toll-like 9 agonists in prophylactic and therapeutic vaccine development in infectious diseases. Drugs R D 2008; 9(3):137–145.PubMedCrossRefGoogle Scholar
  40. 40.
    Agrawal S, Kandimalla ER. Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans 2007; 35(Pt 6):1461–1467.PubMedCrossRefGoogle Scholar
  41. 41.
    Manegold C, Gravenor D, Woytowitz D et al. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced—stage nonsmall-cell lung cancer. J Clin Oncol 2008; 26(24):3979–3986.PubMedCrossRefGoogle Scholar
  42. 42.
    Readett DRJ, Denis L, Krieg AM et al. PF-3512676 (CPG 7909), a Toll-like receptor 9 agonist—status of development for nonsmall cell lung cancer (NSCLC). (abstract) 12th World Congress on Lung Cancer 2007; 2–6; Seoul, Korea, PD3-1-6.Google Scholar
  43. 43.
    Carson AK, Grossman SA, Fisher JD et al. Prognostic factors for survival in adult with recurrent glioma enrolled onto the new approaches to brain tumor therapy CNS Consortium phase I and II clinical trials. J Clin Oncol 2007; 25:2601–2606.PubMedCrossRefGoogle Scholar
  44. 44.
    Friedman EJ. Immune modulation by ionizing radiation and implications for cancer immunotherapy. Curr Pharm Des 2002; 8(19):1765–1780.PubMedCrossRefGoogle Scholar
  45. 45.
    Meng Y, Carpentier AF, Chen L et al. Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 2005; 116(6):992–997.PubMedCrossRefGoogle Scholar
  46. 46.
    Mason KA, Ariga H, Neal R et al. Targeting toll-like receptor 9 with CpG oligodeoxynucleotides enhances tumor response to fractionated radiotherapy. Clin Cancer Res 2005; 11(1):361–369.PubMedGoogle Scholar
  47. 47.
    Milas L, Mason KA, Ariga H et al. CpG oligonucleotide enhances tumor response to radiation. Cancer Res 2004; 64(15):5074–5077.PubMedCrossRefGoogle Scholar
  48. 48.
    Weigel BJ, Rodeberg DA, Krieg AM et al. CpG oligodeoxynucleotides potentiate the antitumor effects of chemotherapy or tumor resection in an orthotopic murine model of rhabdomyosarcoma. Clin Cancer Res 2003; 9(8):3105–3114.PubMedGoogle Scholar
  49. 49.
    Balsari A, Tortoreto M, Besusso D et al. Combination of a CpG-oligodeoxynucleotide and a topoisomerase I inhibitor in the therapy of human tumor xenografts. Eur J Cancer 2004; 40(8):1275–1281.PubMedCrossRefGoogle Scholar
  50. 50.
    Pratesi G, Petrangolini G, Tortoreto M et al. Therapeutic synergism of gemcitabine and CpG-oligodeoxynucleotides in an oythotopic human pancreatic carcinoma xenograft. Cancer Res 2005; 65(14):6388–6393.PubMedCrossRefGoogle Scholar
  51. 51.
    Roux S, Bernat C, Al-Sakere B et al. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol Immunother 2008; 57:1291–1300.PubMedCrossRefGoogle Scholar
  52. 52.
    Hiraoka K, Yamamoto S, Otsuru S et al. Enhanced tumor-specific long-term immunity of hemagglutinating (correction of hemaggluttinating) virus of Japan-mediated dendritic cell-tumor fused cell vaccination by coadministration with CpG oligodeoxynucleotides. J Immunol 2004; 173(77):4297–4307.PubMedGoogle Scholar
  53. 53.
    Chamoto K, Takeshima T, Wakita D et al. Combination immunotherapy with radiation and CpG-based tumor vaccination for the eradication of radio-and immunoresistant lung carcinoma cells. Cancer Sci 2009; 100:934–939.PubMedCrossRefGoogle Scholar
  54. 54.
    Wu A, Oh S, Gharagozlou S et al. In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma. J Immunother 2007; 30(8):789–797.PubMedCrossRefGoogle Scholar
  55. 55.
    Speiser DE, Lienard D, Ruffer N et al. Rapid and strong human CD8+T cell responses to vaccination with peptide, IFA and CpG oligodeoxynucleotide 7909. J Clin Invest 2005; 115:739–746.PubMedGoogle Scholar
  56. 56.
    Valmori D, Souleimanian NE, Tosello V et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T-cells through cross-priming. Proc Natl Acad Sci USA 2007; 104(21):8947–8952.PubMedCrossRefGoogle Scholar
  57. 57.
    Germeau C, Ma W, Schiavetti F et al. High frequency of antitumor T-cells in the blood of melanoma patients before and after vaccination with tumor antigens. J Exp Med 2005; 201(2):241–248.PubMedCrossRefGoogle Scholar
  58. 58.
    Warren TL, Dahle CE, Weiner GJ. CpG oligodeoxynucleotides enhance monoclonal antibody therapy of a murine lymphoma. Clin Lymphoma 2000; 1:57–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Leonard JP, Link BK, Emmanouilides C et al. Phase I trial of toll-like receptor 9 agonist PF-3512676 with and following rituximab in patients with recurrent indolent and aggressive non Hodgkin’s lymphoma. Clin Cancer Res 2007; 13(20):6168–6174.PubMedCrossRefGoogle Scholar
  60. 60.
    Hofmann MA, Kors C, Audring H et al. Phase 1 evaluation of intralesionally injected TLR9-agonist PF-3512676 in patients with basal cell carcinoma or metastatic melanoma. J Immunother 2008; 31(5):520–527.PubMedCrossRefGoogle Scholar
  61. 61.
    Pashenkov M, Goëss G, Wagner C et al. Phase II trial of a toll-like receptor 9 oligonucleotide in patients with metastatic melanoma. J Clin Oncol 2006; 24:5716–5724.PubMedCrossRefGoogle Scholar
  62. 62.
    Link BK, Ballas ZK, Weisdorf D et al. Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin’s lymphoma. J Immunother 2006; 29(5):558–568.PubMedCrossRefGoogle Scholar
  63. 63.
    Ichikawa HT, Williams LP, Segal BM. Activation of APCs through CD40 or Toll-like receptor 9 overcomes tolerance and precipitates autoimmune disease. J Immunol 2002; 169(5):2781–2787.PubMedGoogle Scholar
  64. 64.
    Krieg AM, Vollmer J. Toll-like receptors 7, 8 and 9 linking innate immunity to autoimmunity. Immunol Rev 2007; 220:251–269.PubMedCrossRefGoogle Scholar
  65. 65.
    Cooper CL, Davis HL, Morris ML et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine 2004; 22:3136–3143.PubMedCrossRefGoogle Scholar
  66. 66.
    Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5:471–484.PubMedCrossRefGoogle Scholar
  67. 67.
    Molenkamp BG, van Leeuwen PA, Meijer S et al. Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res 2007; 13(10):2961–2969.PubMedCrossRefGoogle Scholar
  68. 68.
    Kim Y, Girardi M, McAuley S et al. Cutaneous T-cell lymphoma (CTCL) responses to a TLR9 agonist CPG immunomodulator (CPG 7909), a phase I study. J Clin Oncol 2004; 22:582s (suppl; abstr 6600).CrossRefGoogle Scholar
  69. 69.
    Thompson JA, Kuxel T, Bukowski F et al. Phase Ib trial of a targeted TLR9 CpG immunomodulator (CPG 7909) in advanced renal cell carcinoma (RCC). J Clin Oncol 2004; 22:417s (suppl; abstr 4644).CrossRefGoogle Scholar
  70. 70.
    Wagner S, Weber J, Redman B et al. CPG 7909, a TLR9 agonist immunomodulator in metastatic melanoma: A randomized phase II trial comparing two doses and in combination with DTIC (abstract). Proc Am Soc Clin Oncol, 2005 ASCO Annual Meeting Proceedings. 23:7526.Google Scholar
  71. 71.
    Friedberg JW, Kim H, McCauley M et al. Combination immunotherapy with a CpG oligonucleotide (1018 ISS) and rituximab in patients with non-Hodgkin Lymphoma: increased interferon-alpha/beta-inducible gene expression, without significant toxicity. Blood 2005; 105(2):489–495.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Service de NeurologieHôpital AvicenneBobignyFrance

Personalised recommendations