Glioma pp 42-52 | Cite as

Basic Concepts in Glioma Immunology

  • Ian F. Parney
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 746)


Glioblasotmas are the most common primary central nervous system tumor and typically have a dismal prognosis. Immunotherapy has been a promising experimental treatment. Understanding brain tumor immunobiology is critical to designing glioblasotma immunotherapies. In this chapter, we review aspects of basic immunology and neuro-immunology. The antigenic underpinnings of brain tumor immunotherapy including glioma-associated and glioma-specific antigens are discussed. Finally, the molecular and cellular facets of glioma-mediated immunosuppression are outlined. The role of multiple cell types (glioma cells, glioma-infiltrating monocytes, regulatory T cells and myeloid derived suppressor cells) in mediating local and systemic immunosuppression in glioma patients is evaluated.


Glioblastoma Cell Major Histocompatibility Complex Molecule Myeloid Derive Suppressor Cell Glioblastoma Patient Immunotherapeutic Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stupp R, Mason WP, van den Bent MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987–996.PubMedCrossRefGoogle Scholar
  2. 2.
    Janeway CA Jr, Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20:197–216.PubMedCrossRefGoogle Scholar
  3. 3.
    Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med 2000; 343:338–344.PubMedCrossRefGoogle Scholar
  4. 4.
    Abbas AK, Lichtman AH. General properties of immune responses. Cellular and Molecular Immunology. Philadelphia: Elsevier Saunders 2005:3–15.Google Scholar
  5. 5.
    Abbas AK, Lichtman AH. Activation of T Lymphocytes. Cellular and Molecular Immunology. Philadelphia: Elsevier Saunders, 2005:163–188.Google Scholar
  6. 6.
    Medawar PB. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue and to the anterior chamber of the eye. Br J Exp Pathol 1948; 29:58–69.PubMedGoogle Scholar
  7. 7.
    Bertrand I, Mannen H. Etude des reactions vasculaires dans les astrocytomes. Rev Neurol (Paris) 1960; 102:3–19.Google Scholar
  8. 8.
    Bundy GM, Merchent RE. Basic research applied to neurosurgery: lymphocyte trafficking to the central nervous system. Neurosurg Q 1996; 6:51–68.CrossRefGoogle Scholar
  9. 9.
    Goldmann J, Kwidzinski E, Brandt C et al. T-cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006; 80:797–801.PubMedCrossRefGoogle Scholar
  10. 10.
    Sughrue ME, Yang I, Kane AJ et al. Immunological considerations of modern animal models of malignant primary brain tumors. J Transl Med 2009; 7:84.PubMedCrossRefGoogle Scholar
  11. 11.
    Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathologica 2010; 119:89–105.PubMedCrossRefGoogle Scholar
  12. 12.
    Siffrin V, Vogt J, Radbruch H et al. Multiple sclerosis—candidate mechanisms underlying CNS atrophy. Trends Neurosci 2010; 33:202–210.PubMedCrossRefGoogle Scholar
  13. 13.
    Eikelenboom P, van Exel E, Hoozemans JJ et al. Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis; 7:38–41.Google Scholar
  14. 14.
    Glass CK, Saijo K, Winner B et al. Mechanisms underlying inflammation in neurodegeneration. Cell; 140:918–934.Google Scholar
  15. 15.
    Sampson JH, Archer GE, Mitchell DA et al. Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Semin Immunol 2008; 20:267–275.PubMedCrossRefGoogle Scholar
  16. 16.
    Gan HK, Kaye AH, Luwor RB. The EGFRvIII variant in glioblastoma multiforme. J Clin Neurosci 2009; 16:748–754.PubMedCrossRefGoogle Scholar
  17. 17.
    Li G, Wong AJ. EGF receptor variant III as a target antigen for tumor immunotherapy. Expert Rev Vaccines 2008; 7:977–985.PubMedCrossRefGoogle Scholar
  18. 18.
    Sampson JH, Archer GE, Mitchell DA et al. An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 2009; 8:2773–2779.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheever MA, Allison JP, Ferris AS et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15:5323–5337.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang JG, Eguchi J, Kruse CA et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 2007; 13:566–575.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang JG, Kruse CA, Driggers L et al. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neurooncol 2008; 88:65–76.PubMedCrossRefGoogle Scholar
  22. 22.
    Parney IF, Farr-Jones MA, Chang L-J et al. Human glioma immunobiology in vitro: implications for immunogene therapy. Neurosurgery 2000; 46:1169–1178.PubMedCrossRefGoogle Scholar
  23. 23.
    Hao C, Parney IF, Roa WH et al. Cytokine and cytokine receptor mRNA expression in human glioblastomas: evidence of Th1, Th2 and Th3 dysregulation. Acta Neuropathol (Berl) 2002; 103:171–178.CrossRefGoogle Scholar
  24. 24.
    Siepl C, Bodmer S, Frei K et al. The glioblastoma derived T-cell suppressor factor/transforming growth factor beta 2 inhibits T-cell growth without affecting the interaction of interleukin-2 with its receptor. Eur J Immunol 1988; 18:593–600.PubMedCrossRefGoogle Scholar
  25. 25.
    Kuppner M, Hamou M, Sawamura Y et al. Inhibition of lymphocyte function by glioblastoma-derived transforming growth factor beta 2. J Neurosurg 1989; 71:211–217.PubMedCrossRefGoogle Scholar
  26. 26.
    Fontana A, Kristensen F, Dubs R et al. Production of prostaglandin E and interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J Immunol 1982; 129:2413–2419.PubMedGoogle Scholar
  27. 27.
    Sawamura Y, Diserens A-C, de Tribolet N. In vitro Prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes. J Neurooncol 1990; 9:125–130.PubMedCrossRefGoogle Scholar
  28. 28.
    Bender AM, Collier LS, Rodriguez FJ et al. Sleeping beauty-mediated somatic mutagenesis implicates CSF1 in the formation of high-grade astrocytomas. Cancer Res 2010; 70:3557–3565.PubMedCrossRefGoogle Scholar
  29. 29.
    Norden AD, Drappatz J, Wen PY. Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 2009; 5:610–620.PubMedCrossRefGoogle Scholar
  30. 30.
    Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol 2004; 4:941–952.PubMedCrossRefGoogle Scholar
  31. 31.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9:798–809.PubMedCrossRefGoogle Scholar
  32. 32.
    Hussain SF, Kong LY, Jordan J et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res 2007; 67:9630–9636.PubMedCrossRefGoogle Scholar
  33. 33.
    Kong LY, Wei J, Sharma AK et al. A novel phosphorylated STAT3 inhibitor enhances T-cell cytotoxicity against melanoma through inhibition of regulatory T-cells. Cancer Immunol Immunother 2009; 58:1023–1032.PubMedCrossRefGoogle Scholar
  34. 34.
    Parsa AT, Waldron JS, Panner A et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13:84–88.PubMedCrossRefGoogle Scholar
  35. 35.
    Dong H, Strome SE, Salomao DR et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8:793–800.PubMedGoogle Scholar
  36. 36.
    Wintterle S, Schreiner B, Mitsdoerffer M et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 2003; 63:7462–7467.PubMedGoogle Scholar
  37. 37.
    Parney IF, Waldron JS, Parsa AT. Flow cytometry and in vitro analysis of human glioma-associated macrophages. J Neurosurg 2009; 110:572–582.PubMedCrossRefGoogle Scholar
  38. 38.
    Frei K, Siepl C, Groscurth P et al. Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol 1987; 17:1271–1278.PubMedCrossRefGoogle Scholar
  39. 39.
    Watters JJ, Schartner JM, Badie B. Microglia function in brain tumors. J Neurosci Res 2005; 81:447–455.PubMedCrossRefGoogle Scholar
  40. 40.
    Yang I, Han SJ, Kaur G et al. The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 2010; 17:6–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Huettner C, Paulus W, Roggendorf W. Messenger RNA: expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 1995; 146:317–322.PubMedGoogle Scholar
  42. 42.
    Wagner S, Czub S, Greif M et al. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer 1999; 82:12–16.PubMedCrossRefGoogle Scholar
  43. 43.
    Badie B, Schartner J, Prabakaran S et al. Expression of Fas ligand by microglia: possible role in glioma immune evasion. J Neuroimmunol 2001; 120:19–24.PubMedCrossRefGoogle Scholar
  44. 44.
    Rodrigues J, Gonzalez G, Zhang L et al. Normal human monocytes cultured with human gliomas resemble myeloid suppressor cells. Neuro Oncol 2010; 12:351–365.PubMedCrossRefGoogle Scholar
  45. 45.
    Gustafson MP, Lin Y, New KC et al. Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors and dexamethasone. Neuro Oncol 2010.Google Scholar
  46. 46.
    Mahaley MS Jr., Brooks WH, Roszman TL et al. Immunobiology of primary intracranial tumors. Part 1: studies of the cellular and humoral general immune competence of brain-tumor patients. J Neurosurg 1977; 46:467–476.PubMedCrossRefGoogle Scholar
  47. 47.
    Dix AR, Brooks WH, Roszman TL et al. Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 1999; 100:216–232.PubMedCrossRefGoogle Scholar
  48. 48.
    Morford LA, Dix AR, Brooks WH et al. Apoptotic elimination of peripheral T-lymphocytes in patients with primary intracranial tumors. J Neurosurg 1999; 91:935–946.PubMedCrossRefGoogle Scholar
  49. 49.
    Zou JP, Morford LA, Chougnet C et al. Human glioma-induced immunosuppression involves soluble factor(s) that alters monocyte cytokine profile and surface markers. J Immunol 1999; 162:4882–4892.PubMedGoogle Scholar
  50. 50.
    Fecci PE, Mitchell DA, Whitesides JF et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 2006; 66:3294–3302.PubMedCrossRefGoogle Scholar
  51. 51.
    Humphries W, Wei J, Sampson JH et al. The role of tregs in glioma-mediated immunosuppression: potential target for intervention. Neurosurg Clin N Am 2010; 21:125–137.PubMedCrossRefGoogle Scholar
  52. 52.
    Hussain SF, Yang D, Suki D et al. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro Oncol 2006; 8:261–279.PubMedCrossRefGoogle Scholar
  53. 53.
    Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182:4499–4506.PubMedCrossRefGoogle Scholar
  54. 54.
    Serafini P, De Santo C, Marigo I et al. Derangement of immune responses by myeloid suppressor cells. Cancer Immunol Immunother 2004; 53:64–72.PubMedCrossRefGoogle Scholar
  55. 55.
    Sinha P, Clements VK, Ostrand-Rosenberg S. Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 2005; 174:636–645.PubMedGoogle Scholar
  56. 56.
    Nagaraj S, Gupta K, Pisarev V et al. Altered recognition of antigen is a mechanism of CD8+ T-cell tolerance in cancer. Nat Med 2007; 13:828–835.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Ian F. Parney
    • 1
  1. 1.Department of Neurologic SurgeryMayo ClinicRochesterUSA

Personalised recommendations