Piezoaeroelastic Typical Section for Wind Energy Harvesting

  • Vagner Candido de Sousa
  • Douglas D’Assunção
  • Carlos De MarquiJr.
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

In this paper an electromechanically coupled typical section is modeled for energy harvesting from the aeroelastic oscillations. An airfoil with three degrees of freedom is investigated. Piezoelectric coupling is introduced to the plunge degree-of-freedom and the influence of different load resistances on the overall system behavior is investigated. A free play region is considered in the control surface rotation axis. In the presence of such a concentrated structural nonlinearity, the flow-induced displacements can be harmonic, non-harmonic or chaotic. The presented model can simulate arbitrary airfoil motions as well as represent the nonlinear behavior. The Jones’ approximation to Wagner indicial function is adopted to approximate the aerodynamic loads. An optimal load resistance, which provides both the maximum power and the best passive control of vibration due to the shunt damping effect, is identified. Results show that airflow velocities close to the natural wind are enough to induce self-sustained oscillations and produce persistent power output from scaled piezoaeroelastic generators.

References

  1. 1.
    Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct 16:R1–R21. doi:10.1088/0964-1726/16/3/R01 CrossRefGoogle Scholar
  2. 2.
    Pimentel D, Musilek P, Knight A (2010) Energy harvesting simulation for automatic arctic monitoring stations. In: IEEE electrical power and energy conference, Halifax, NS (Canada) http://dx.doi.org/10.1109/EPEC.2010.5697232
  3. 3.
    Cook-Chennault KA, Thambi N, Sastry AM (2008) Powering MEMS portable devices –a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct 17:30CrossRefGoogle Scholar
  4. 4.
    De Marqui C, Vieira WGR, Erturk A, Inman DJ (2011) Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method. ASME J Vib Acoust 133:011003CrossRefGoogle Scholar
  5. 5.
    Erturk A, Vieira WGR, De Marqui C, Inman DJ (2010) On the energy harvesting potential of piezoaeroelastic systems. Appl Phys Lett 96:184103CrossRefGoogle Scholar
  6. 6.
    Lee BHL, Price SJ, Wong YS (1999) Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Prog Aerosp Sci 35:205–334CrossRefGoogle Scholar
  7. 7.
    Sousa VC, Anicézio MM, De Marqui C Jr, Erturk A (2011) Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment. Smart Mater Struct 20(9):094007-1–094007-8. doi:10.1088/0964-1726/20/9/094007 CrossRefGoogle Scholar
  8. 8.
    Dunnmon JA, Stanton SC, Mann BP, Dowell EH (2011) Power extraction from aeroelastic limit cycle oscillations. J Fluid Struct. doi:10.1016/j.jfluidstructs.2011.02.003
  9. 9.
    Sousa VC, De Marqui C Jr (2011) Modeling and analysis of a broadband piezoaeroelastic energy harvester. In: Proceedings of COBEM, Brazilian congress of mechanical engineering, Uberlândia Natal, RNGoogle Scholar
  10. 10.
    Tang D, Dowell EH, Virgin LN (1998) Limit cycle behavior of an airfoil with a control surface. J Fluid Struct 12:839–858CrossRefGoogle Scholar
  11. 11.
    Tang D, Dowell EH (2010) Aeroelastic airfoil with free play at angle of attack with gust excitation. AIAA J 48(2):427–442CrossRefGoogle Scholar
  12. 12.
    Edwards JW, Ashley H, Breakwell JV (1979) Unsteady aerodynamic modeling for arbitrary motions. AIAA J 17(4):365–374CrossRefMATHGoogle Scholar
  13. 13.
    Conner MD, Virgin LN, Dowell EH (1996) Accurate numerical integration of state space models for aeroelastic systems with free play. AIAA J 34(10):2202–2205CrossRefGoogle Scholar
  14. 14.
    Hénon M (1982) On the numerical computation of Poincaré maps. Physica D 5:412–414MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Anton SR, Erturk A, Inman DJ (2010) Multifunctional self-charging structures using piezoceramics and thin-film batteries. Smart Mater Struct 19:15. doi:10.1088/0964-1726/19/11/115021 CrossRefGoogle Scholar
  16. 16.
    De Marqui C, Erturk A, Inman DJ (2009) An electromechanical finite element model for piezoelectric energy harvester plates. J Sound Vib 327:9–25. doi:10.1016/j.jsv.2009.05.015 CrossRefGoogle Scholar
  17. 17.
    Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. ASME J Vib Acoust 130:041002CrossRefGoogle Scholar
  18. 18.
    Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2012

Authors and Affiliations

  • Vagner Candido de Sousa
    • 1
  • Douglas D’Assunção
    • 1
  • Carlos De MarquiJr.
    • 1
  1. 1.Department of Aeronautical EngineeringEngineering School of Sao Carlos – University of Sao PauloSão CarlosBrazil

Personalised recommendations