Advertisement

Morphology, Chemical, and Phase Composition of Electrodeposited Co–Ni, Fe–Ni, and Mo–Ni–O Powders

  • V. D. Jović
  • U. Č. Lačnjevac
  • B. M. Jović
Chapter
Part of the Modern Aspects of Electrochemistry book series (MAOE, volume 54)

Abstract

The alloy powders of the iron-group metals are of great interest for many industrial applications [1–88].

Keywords

Polarization Curve Hydrogen Evolution Alloy Powder Powder Agglomerate MoNi4 Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was financially supported by the Ministry of Education and Science of the Republic of Serbia through the Projects No. 1806/2002, No. 142032G/2006, and No. 172054/2011.

The authors are indebted to D. Poleti from the Faculty of Technology and Metallurgy University of Belgrade, Serbia, for DSC-TGA analysis.

The authors are also indebted to V.M. Maksimović from the Institute of Nuclear Sciences—Vinča, Belgrade, Serbia, for the XRD analysis of all investigated systems.

Special thanks to A. Rečnik from the Jožef Stefan Institute, Ljubljana, Slovenia, for TEM analysis of as-deposited samples.

The authors also wish to express their gratitude to M.G. Pavlović, Institute of Electrochemistry ICTM, Belgrade, Serbia, for useful discussions in the case of the Co–Ni system.

References

  1. 1.
    Papers CT, Brabyn SM (1987) Met Powder Rep 42:863Google Scholar
  2. 2.
    Ekemar S, Lindholm L, Hartzell T (1982) Int J Refract H 1:37Google Scholar
  3. 3.
    Erol S, Nursel D (1999) J Adhes Sci Technol 13:679CrossRefGoogle Scholar
  4. 4.
    Rehim SS, Halim AM, Osman MM (1985) J Appl Electrochem 15:107CrossRefGoogle Scholar
  5. 5.
    Laughlin D, Lu B, Hsu Y, Zou J, Lambeth D (2000) IEEE Trans Magn 36:48CrossRefGoogle Scholar
  6. 6.
    Vassal N, Salmon E, Fauvarque J (1999) J Electrochem Soc 146:20CrossRefGoogle Scholar
  7. 7.
    Benvenuti F, Carlini C, Marchetti F, Marchionna M, Galletti A, Sbrana G (2001) J Organomet Chem 622:286CrossRefGoogle Scholar
  8. 8.
    Tsay M, Chang F (2000) Appl Catal A Gen 203:15CrossRefGoogle Scholar
  9. 9.
    Diskin A, Cunningham R, Ormerod R (1998) Catal Today 46:147CrossRefGoogle Scholar
  10. 10.
    Kapoor S, Salunke HG, Tripathi AK, Kulshreshtha SK, Mittal JP (2000) Mater Res Bull 35:143CrossRefGoogle Scholar
  11. 11.
    Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) J Catal 136:232CrossRefGoogle Scholar
  12. 12.
    Kikuko K, Teruh iko I (1998) Jpn Kokai Tokkyo Koho JP 10302790Google Scholar
  13. 13.
    Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1994) Mater Lett 19:263CrossRefGoogle Scholar
  14. 14.
    Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1995) Thermochim Acta 269(270):117CrossRefGoogle Scholar
  15. 15.
    Aymard L, Dumont B, Viau G (1996) J Alloys Compd 242:108CrossRefGoogle Scholar
  16. 16.
    Huang J, Wu Y, Ye H (1996) Acta Mater 44:1201CrossRefGoogle Scholar
  17. 17.
    Koltypin Y, Katabi G, Cao X, Prozorov R, Gedanken A (1966) J Non Cryst Solids 201:159CrossRefGoogle Scholar
  18. 18.
    Kapoor S, Salunke H, Tripathi A, Kulshreshta S, Mittal J (2000) Mater Res Bull 35:143CrossRefGoogle Scholar
  19. 19.
    Kurikka V, Gedanken A, Prozorov R, Revesz A, Lendvai J (2000) J Mater Res 15:332CrossRefGoogle Scholar
  20. 20.
    Fievet F, Lagier J, Blin B, Meaudoin B, Figlarz M (1989) Solid State Ionics 32(33):198CrossRefGoogle Scholar
  21. 21.
    Li Y, Li L, Liao H, Wang H, Qian Y (1999) J Mater Chem 9:2675CrossRefGoogle Scholar
  22. 22.
    Degen A, Macek J (1999) Nanostruct Mater 12:225CrossRefGoogle Scholar
  23. 23.
    Gibson KP (1995) Science 267:1338CrossRefGoogle Scholar
  24. 24.
    Chen D, Wu S (2000) Chem Mater 12:1354CrossRefGoogle Scholar
  25. 25.
    Zhang D-E, Ni X-M, Zhang X-J, Zheng H-G (2006) J Magn Magn Mater 302:290CrossRefGoogle Scholar
  26. 26.
    Hayashi T, Ohno T, Yatsuda S, Uyeda R (1977) Jpn J Appl Phys 16:705CrossRefGoogle Scholar
  27. 27.
    Dong L, Zhang Z, Jin S, Sun W, Chuang Y (1998) Nanostruct Mater 10:585CrossRefGoogle Scholar
  28. 28.
    Bianco A, Gusmano G, Montanari R, Montesperelli G, Traversa E (1995) Thermochim Acta 269:117CrossRefGoogle Scholar
  29. 29.
    Viau G, Ravel F, Acher O, Fiévet-Vincent F, Fiévet F (1995) J Magn Magn Mater 144:377CrossRefGoogle Scholar
  30. 30.
    Gao X, Chen D, Dollimore D, Skrzypczak-Jankum E, Burckel P (1993) Thermochim Acta 220:75CrossRefGoogle Scholar
  31. 31.
    Neddermann R, Binnewies M (1996) Z Anorg Allg Chem 622:17CrossRefGoogle Scholar
  32. 32.
    Girirdin D, Maurer M (1990) Mater Res Bull 25:119CrossRefGoogle Scholar
  33. 33.
    Xiaoli X, Zuoren N, Yabao J, Peiyun T, Shunlin S, Jie X, Tieyong Z (2008) J Alloys Compd 466:387CrossRefGoogle Scholar
  34. 34.
    Jang HC, Ju SH, Kang YC (2009) J Alloys Compd 478:206CrossRefGoogle Scholar
  35. 35.
    Abd El-Halim AM, Khalil RM (1986) Surf Coat Technol 27:103CrossRefGoogle Scholar
  36. 36.
    Yur’ev BP, Golubkov LA (1969) Trudy—Leningradskii Politekhnicheskii Institut imeni M. I. Kalinina 14:269Google Scholar
  37. 37.
    Jović VD, Maksimović V, Pavlović MG, Popov KI (2006) J Solid State Electrochem 10:373CrossRefGoogle Scholar
  38. 38.
    Jović VD, Jović BM, Pavlović MG, Maksimović V (2006) J Solid State Electrochem 10:959CrossRefGoogle Scholar
  39. 39.
    Jović VD, Jović BM, Maksimović V, Pavlović MG (2007) Electrochim Acta 52:4254CrossRefGoogle Scholar
  40. 40.
    Jović VD, Jović BM, Pavlović MG (2006) Electrochim Acta 51:5468CrossRefGoogle Scholar
  41. 41.
    Jović VD, Maksimović V, Pavlović MG, Jović BM (2006) Mater Sci Forum 518:307CrossRefGoogle Scholar
  42. 42.
    Maurice DR, Courtney TH (1990) Metall Mater Trans A 21A:289Google Scholar
  43. 43.
    Hamzaoui R, Elkedim O, Greneche JM, Gaffet E (2005) J Magn Magn Mater 294:e145CrossRefGoogle Scholar
  44. 44.
    Hamzaoui R, Elkedim O, Gaffet E (2004) Mater Sci Eng A 381:363CrossRefGoogle Scholar
  45. 45.
    Valderruten JF, Perez Alcazar GA, Greneche JM (2006) Phys B 384:316CrossRefGoogle Scholar
  46. 46.
    Zhou PH, Deng LJ, Xie JL, Liang DF, Chen L, Zhao XQ (2005) J Magn Magn Mater 292:325CrossRefGoogle Scholar
  47. 47.
    Kaloshkin SD, Tcherdyntsev VV, Tomilin IA (2001) Phys B 299:236CrossRefGoogle Scholar
  48. 48.
    Tcherdyntsev VV, Kaloshkin SD, Tomilin LA, Shelekhov EV, Baldokhin YuV (1999) Nanostruct Mater 12:139CrossRefGoogle Scholar
  49. 49.
    Baldokhin YuV, Tcherdyntsev VV, Kaloshkin SD, Kochetov GA, Pustov YuA (1999) J Magn Magn Mater 203:313CrossRefGoogle Scholar
  50. 50.
    Baldokhin YV, Kolotyrkin PY, Petrov YI, Shafranovsky EA (1994) Phys Lett A 189:137CrossRefGoogle Scholar
  51. 51.
    Schirmer B, Wuttig M (1999) Phys Rev B 60:945Google Scholar
  52. 52.
    Kuhrt C, Schultz L (1993) J Appl Phys 73:1975CrossRefGoogle Scholar
  53. 53.
    Jartych E, Zurawicz JK, Oleszak D, Pekala M (2000) J Magn Magn Mater 208:221CrossRefGoogle Scholar
  54. 54.
    Koohkana R, Sharafia S, Shokrollahib H, Janghorbanb K (2008) J Magn Magn Mater 320:1089CrossRefGoogle Scholar
  55. 55.
    Pandey B, Verma HC (2007) J Phys Condens Matter 19:406207CrossRefGoogle Scholar
  56. 56.
    Wang H, Liu Q, Zhang J, Hsu TY (Zuyao X) (2003) Nanotechnology 14:696Google Scholar
  57. 57.
    Schneeweissa O, Davida B, Zaka T, Zborilb R, Mashlanb M (2007) J Magn Magn Mater 310:e858CrossRefGoogle Scholar
  58. 58.
    Song HB, Lee KJ, Kim KH, Oh ST, Lee SK, Choa YH (2010) J Nanosci Nanotechnol 10:106CrossRefGoogle Scholar
  59. 59.
    Kim KH, Yu JH, Lee SB, Lee SK, Choa YH, Oh ST, Kim JR (2008) IEEE Trans Magn 44:3805CrossRefGoogle Scholar
  60. 60.
    Kasagi T, Tsutaoka T, Hatakeyama K (1999) IEEE Trans Magn 35:3424CrossRefGoogle Scholar
  61. 61.
    Oh ST, Joo MH, Choa YH, Kim KH, Lee SK (2010) Phys Scr T139:014050CrossRefGoogle Scholar
  62. 62.
    Lačnjevac U, Jović BM, Jović VD (2009) Electrochim Acta 55:535CrossRefGoogle Scholar
  63. 63.
    Lačnjevac U, Jović BM, Maksimović VM, Jović VD (2010) J Appl Electrochem 40:701CrossRefGoogle Scholar
  64. 64.
    Zhelibo EP, Kravets NN, Gamarkin MYu, Remez SV (1995) Powder Metall Metal Ceram 34:113CrossRefGoogle Scholar
  65. 65.
    Zhelibo EP, Kravets NN (1997) Powd Metall Metal Ceram 36:264CrossRefGoogle Scholar
  66. 66.
    Chu CM (2003) J Chin Inst Eng 34:689Google Scholar
  67. 67.
    Morrish AH, Haneda KJ (1981) Appl Phys 52:2496Google Scholar
  68. 68.
    Ishino K, Narumiya Y (1987) Am Ceram Soc Bull 66:1469Google Scholar
  69. 69.
    Zhang Q, Itoh T, Abe M, Tamaura Y (1992) In: Yamaguchi T, Abe M (eds) Proceedings of the 6th international conference on ferrites. The Japan Society of Powder and Powder Metallurgy, Tokyo, p 481Google Scholar
  70. 70.
    Dube GR, Darshane YS (1993) J Mol Catal 79:285CrossRefGoogle Scholar
  71. 71.
    Gopal Reddy CV, Manorama SV, Rao VJ (1999) Sens Actuators B Chem 55:90Google Scholar
  72. 72.
    Satyanarayana LK, Reddy KM, Manorama SV (2003) Mater Chem Phys 82:21CrossRefGoogle Scholar
  73. 73.
    Abe M, Itoh T, Tamaura Y et al (1998) J Appl Phys 63:3774CrossRefGoogle Scholar
  74. 74.
    Itoh T, Abe M, Sasao T et al (1989) IEEE Trans Magn 25:4230CrossRefGoogle Scholar
  75. 75.
    Suran G, Heurtel A (1972) J Appl Phys 43:536CrossRefGoogle Scholar
  76. 76.
    Naoe M, Yamanaka S (1970) Jpn J Appl Phys 9:293CrossRefGoogle Scholar
  77. 77.
    Marshall DJ (1971) J Cryst Growth 9:305CrossRefGoogle Scholar
  78. 78.
    Gibart P, Robbins M, Кane AB (1974) J Cryst Growth 24–25:166CrossRefGoogle Scholar
  79. 79.
    Pulliam GR (1967) J Appl Phys 38:1120CrossRefGoogle Scholar
  80. 80.
    Mee JE, Pulliam GR, Archer JL et al (1969) IEEE Trans Magn 5:717CrossRefGoogle Scholar
  81. 81.
    Fitzgerald AG, Engin R (1974) Thin Solid Films 20:317CrossRefGoogle Scholar
  82. 82.
    Itoh H, Takeda T, Naka S (1986) J Mater Sci 21:3677CrossRefGoogle Scholar
  83. 83.
    Tsuchiya T, Yamashiro H, Sei T et al (1992) J Mater Sci 27:3645CrossRefGoogle Scholar
  84. 84.
    Jung DS, Kang YC (2009) J Magn Magn Mater 321:619CrossRefGoogle Scholar
  85. 85.
    Deschanres JL, Langlet M, Joubert JC (1990) J Magn Magn Mater 83:437CrossRefGoogle Scholar
  86. 86.
    Lee PY, Ishizaka K, Suematsu H et al (2006) J Nanocryst Res 8:29CrossRefGoogle Scholar
  87. 87.
    Sartale SD, Lokhande CD, Giersig M et al (2004) J Phys Condens Matter 16:773CrossRefGoogle Scholar
  88. 88.
    Fang J, Shama N, Tung L et al (2003) J Appl Phys 93:7483CrossRefGoogle Scholar
  89. 89.
    Ceylan A, Ozcan S, Ni C et al (2008) J Magn Magn Mater 320:857CrossRefGoogle Scholar
  90. 90.
    Kinh VO, Chassaing E, Saurat M (1975) Electrodep Surf Treat 3:205CrossRefGoogle Scholar
  91. 91.
    Yao SW, Zeng Y, Guo HT (1994) Surf Tech (Japan) 45:643Google Scholar
  92. 92.
    Friend WZ (1980) Corrosion of nickel and nickel-base alloys. Wiley Interscience, New York, p 248Google Scholar
  93. 93.
    Kriz JF, Shimada H, Yoshimura Y, Matsubayashi N, Nishijama A (1995) Fuel 74:1852CrossRefGoogle Scholar
  94. 94.
    Astier MP, Dji G, Teichner SJ (1991) Appl Catal 72:321CrossRefGoogle Scholar
  95. 95.
    Tsenta TE, Knyazheva VM, Svistunova TV, Kolotyrkin YM, Zakharin DS (1989) Prot Met 25:28Google Scholar
  96. 96.
    Beltowska-Lehman E (1990) J Appl Electrochem 20:132CrossRefGoogle Scholar
  97. 97.
    Drown DE, Mahmood MN, Turner AK, Hall SM, Fogarty PO (1982) Int J Hydrogen Energy 7:405CrossRefGoogle Scholar
  98. 98.
    Huot JY, Brossard L (1988) J Appl Electrochem 18:815CrossRefGoogle Scholar
  99. 99.
    Conway BE, Bai L, Sattar MA (1987) Int J Hydrogen Energy 12:607CrossRefGoogle Scholar
  100. 100.
    Raj IA, Vasu KI (1992) J Appl Electrochem 22:471CrossRefGoogle Scholar
  101. 101.
    Conway BE, Bai L, Tessier DF (1984) J Electroanal Chem 161:39CrossRefGoogle Scholar
  102. 102.
    Fan C, Piron DL, Paridis P (1994) Electrochim Acta 39:2715CrossRefGoogle Scholar
  103. 103.
    Conway BE, Bai L (1985) J Chem Soc Faraday Trans I 81:1841CrossRefGoogle Scholar
  104. 104.
    Raj IA, Kovenkatesan V (1988) Int J Hydrogen Energy 12:215Google Scholar
  105. 105.
    Fan C, Piron DL, Sleb A, Paridis P (1994) J Electrochem Soc 141:382CrossRefGoogle Scholar
  106. 106.
    Divisek J, Schmotz H, Balej J (1989) J Appl Electrochem 19:519CrossRefGoogle Scholar
  107. 107.
    Lasia A, Rami A (1990) J Electroanal Chem 294:123CrossRefGoogle Scholar
  108. 108.
    Jakšić JM, Vojnović MV, Krstajić NV (2000) Electrochim Acta 45:4151CrossRefGoogle Scholar
  109. 109.
    Gennero de Chialvo MR, Chialvo AC (1998) J Electroanal Chem 448:87CrossRefGoogle Scholar
  110. 110.
    Jakšić MM (1989) Mater Chem Phys 22:1CrossRefGoogle Scholar
  111. 111.
    Kedzierzawski P, Oleszak D, Janik-Czachor M (2001) Mater Sci Eng A300:105Google Scholar
  112. 112.
    Oleszak D, Portnoy VK, Matyja H (1999) Mater Sci Forum 312:345CrossRefGoogle Scholar
  113. 113.
    De la Torre SD, Oleszak D, Kakitsuji A, Miyamoto K, Miyamoto H, Martinez SR, Almeraya CF, Martinez VA, Rois JD (2000) Mater Sci Eng A276:226Google Scholar
  114. 114.
    Goswami GL, Kumar S, Galun R, Mordike BL (2003) Lasers Eng 13:1Google Scholar
  115. 115.
    Bhattacharjee PP, Ray RK, Upadhyaya A (2006) Physica C449:116Google Scholar
  116. 116.
    Brenner A (1963) Electrodeposition of alloys. Priniciples and practice, vol 2. Academic, New YorkGoogle Scholar
  117. 117.
    Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:885CrossRefGoogle Scholar
  118. 118.
    Podlaha EJ, Landolt D (1996) J Electrochem Soc 143:893CrossRefGoogle Scholar
  119. 119.
    Podlaha EJ, Landolt D (1997) J Electrochem Soc 144:1672CrossRefGoogle Scholar
  120. 120.
    Marlot A, Kern P, Landolt D (2002) Electrochim Acta 48:29CrossRefGoogle Scholar
  121. 121.
    Jović BM, Jović VD, Maksimović VM, Pavlović MG (2008) Electrochim Acta 53:4796CrossRefGoogle Scholar
  122. 122.
    Lačnjevac U, Jović BM, Baščarević Z, Maksimović VM, Jović VD (2009) Electrochim Acta 54:3115CrossRefGoogle Scholar
  123. 123.
    Jović VD, Jović BM, Lačnjevac U, Branković G, Bernik S, Rečnik A (2010) Electrochim Acta 55:4188CrossRefGoogle Scholar
  124. 124.
    Dean JA (1985) Lange’s handbook of chemistry, 13th edn. Mc-Graw Hill, New York, p 5Google Scholar
  125. 125.
    Despić AR, Jović VD (1995) In: White RE et al (eds) Modern aspects of electrochemistry, chap 2, vol 27. Plenum, New YorkGoogle Scholar
  126. 126.
    Horkans J (1979) J Electrochem Soc 126:1861; (1981) J Electrochem Soc 128:45Google Scholar
  127. 127.
    Jepson F, Meecham S, Salt FW (1955) Trans Inst Met Finish 32:160Google Scholar
  128. 128.
    Young CBF, Struyk C (1946) Trans Electrochem Soc 89:383CrossRefGoogle Scholar
  129. 129.
    Schoch EP, Hirsch A (1907) Trans Am Electrochem Soc 11:135Google Scholar
  130. 130.
    Jović VD, Tošić N, Stojanović M (1997) J Electroanal Chem 420:43CrossRefGoogle Scholar
  131. 131.
    Lönnberg B (1994) J Mater Sci 29:3224CrossRefGoogle Scholar
  132. 132.
    Hansen M, Andrenko K (1958) Constitution of binary alloys. Mc-Graw Hill, New YorkGoogle Scholar
  133. 133.
    Calusaru A (1979) Electrodeposition of powders from solutions. Elsevier, New YorkGoogle Scholar
  134. 134.
    Wranglen G (1960) Electrochim Acta 2:1845CrossRefGoogle Scholar
  135. 135.
    Kieling VC (1997) Surf Coat Technol 96:135CrossRefGoogle Scholar
  136. 136.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New YorkGoogle Scholar
  137. 137.
    Zhou XM, Wei XW (2009) Cryst Growth Des 9:7CrossRefGoogle Scholar
  138. 138.
    Popov KI, Djokić SS, Grgur BN (2002) Fundamental aspects of electrometallurgy. Kluwer, New YorkGoogle Scholar
  139. 139.
    Chassaing E, Portal N, Levy AF, Wang G (2004) J Appl Electrochem 34:1085CrossRefGoogle Scholar
  140. 140.
    Sanches LS, Domingues SH, Marino CEB, Mascaro LH (2004) Electrochem Commun 6:543CrossRefGoogle Scholar
  141. 141.
    Donten M, Celsiulis H, Stojek Z (2005) Electrochim Acta 50:1405CrossRefGoogle Scholar
  142. 142.
    Morgenstern T, Lienhardt JL, Reichelt W, Koenig U, Oppermann H (1993) Mater Sci Forum 133–136:627CrossRefGoogle Scholar
  143. 143.
    Pejryd L (1985) Scand J Metall 14:268Google Scholar
  144. 144.
    Hussain OM, Ramana CV, Zaghib K, Julien CM (2006) In: Chowdari BVR et al (eds) Proceedings of the 10th Asian conference on solid state ionics: advanced materials for emerging technologies. World Scientific, River Edge, NJ, p 136Google Scholar
  145. 145.
    McCarron EM III (1986) J Chem Soc Chem Commun 336Google Scholar
  146. 146.
    Parise JB, McCarron EM III, Sleight W (1987) Mater Res Bull 22:803CrossRefGoogle Scholar
  147. 147.
    Smith GW (1962) Acta Cryst 15:1054CrossRefGoogle Scholar
  148. 148.
    Smith GW, Ibers JA (1965) Acta Cryst 19:269CrossRefGoogle Scholar
  149. 149.
    Abrahams SC, Reddy JM (1965) J Chem Phys 43:2533CrossRefGoogle Scholar
  150. 150.
    Sleight AW, Chamberland BL (1968) Inorg Chem 7:1672CrossRefGoogle Scholar
  151. 151.
    Plyasova LM, Ivanchenko IYu, Andrushkevich MM, Buyanov RA, Itenberg ISh, Khramova GA, Karakchiev LG, Kustova GN, Stepanov GA, Tsailingold AL, Pilipenko FS (1973) Kinet Catal 14:1010Google Scholar
  152. 152.
    Harker D (1944) J Chem Phys 12:315CrossRefGoogle Scholar
  153. 153.
    Parise JB et al (1991) J Solid State Chem 93:193CrossRefGoogle Scholar
  154. 154.
    Zeng Y, Li Z, Ma M, Zhou S (2000) Electrochem Commun 2:36CrossRefGoogle Scholar
  155. 155.
    Min X, Zhou M, Chai L, Wang Y, Shu Y (2009) Trans Nonferrous Met Soc China 19:1360CrossRefGoogle Scholar
  156. 156.
    Younes O, Gileadi E (2002) J Electrochem Soc 149:C100CrossRefGoogle Scholar
  157. 157.
    Palmer DA, Benezeth P, Wesolowski DJ (2005) In: Proceedings of the 14th international conference on the properties of water and steam, Kyoto, p 264Google Scholar
  158. 158.
    Trambouze Y, Colleuille Y, The TH, Hebd CR (1956) Seances Acad Sci Ser C 242:497Google Scholar
  159. 159.
    Yanushkevich TM, Zhukovskii VM, Ust’yantsev VM (1974) Russ J Inorg Chem 19:1056Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • V. D. Jović
    • 1
  • U. Č. Lačnjevac
    • 1
  • B. M. Jović
    • 1
  1. 1.Department of Materials Science, Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations