Chiral Pesticides: Identification, Description, and Environmental Implications

  • Elin M. Ulrich
  • Candice N. Morrison
  • Michael R. Goldsmith
  • William T. Foreman
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 217)


Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.


Chiral Center Supercritical Fluid Chromatography Pyrethroid Insecticide Pesticide Manual Enantioselective Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Acknowledgments and Disclaimer

The authors wish to thank Wayne Garrison (US EPA) and Steve McCall (BASF Corp.) for valuable technical review comments. This review was conceived during a National Research Council postdoctoral fellowship (E.M.U.) with financial support provided by the USGS Toxic Substances Hydrology and National Water-Quality Assessment Programs. The United States Environmental Protection Agency through its Office of Research and Development funded and managed additional research under contract number EP08D000135 (C.N.M.). This document has been subjected to review and approved for publication by the US EPA and USGS. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the US Government.


  1. Advanced Chemistry Development, Inc. (1994–2010) Toronto, Canada, ChemSketch. ver 12.01Google Scholar
  2. Advanced Chemistry Development, Inc. (1997–2010) Toronto, Canada, ChirBase (LC/GC/CE). ver 12.01Google Scholar
  3. Ariëns EJ (1989) Racemates—an impediment in the use of drugs and agrochemicals. In: Krstulovic AM (ed) Chiral separations by HPLC. Ellis Horwood Limited, Chichester, pp 31–68Google Scholar
  4. Berkman CE, Quinn DA, Thompson CM (1993) Interaction of acetylcholinesterase with the enantiomers of malaoxon and isomalathion. Chem Res Toxicol 6:724–730CrossRefGoogle Scholar
  5. Bethan B, Bester K, Hühnerfuss H, Rimkus G (1997) Bromocyclen contamination of surface water, waste water and fish from northern Germany, and gas chromatographic chiral separation. Chemosphere 34:2271–2280CrossRefGoogle Scholar
  6. Bicchi C, Cravotto G, D’Amato A, Rubiolo P, Galli A, Galli M (1999) Cyclodextrin derivatives in gas chromatographic separation of racemates with different volatility. Part XV: 6-O-t-butyldimethylsilyl versus 6-O-t-hexyldimethylsilyl-β and γ-derivatives. J Microcolumn Sep 11:487–500CrossRefGoogle Scholar
  7. Borden JH, Chong J, McLean JA, Slessor KN, Mori K (1976) Gnathotrichus sulcatus: synergistic response to enantiomers of the aggregation pheromone sulcatol. Science 192:894–896CrossRefGoogle Scholar
  8. Burden RS, Carter GA, Clark T, Cooke DT, Croker SJ, Deas AHB, Hedden P, James CS, Lenton JR (1987) Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis. Pest Sci 21:253–267CrossRefGoogle Scholar
  9. Buser HP, Francotte E (1997) Stereoselective analysis in crop protection. In: Ahuja S (ed) Chiral separations: applications and technology. American Chemical Society, Washington, pp 93–138Google Scholar
  10. Buser HR, Poiger T, Müller MD (2000) Changed enantiomer composition of metolachlor in surface water following the introduction of the enantiomerically enriched product to the market. Environ Sci Technol 34:2690–2696CrossRefGoogle Scholar
  11. Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5:385–415CrossRefGoogle Scholar
  12. CambridgeSoft (1986–2007) Cambridge, MA, ChemBioDraw Ultra. ver 11.0.1Google Scholar
  13. CambridgeSoft (2010) Scientific Database Gateway. Accessed on March 2009
  14. Carle PR, Colas R, Delabarre M, Escuret P, Fourcaud A, Fulconis P, Glomot R, Hervé JJ, L’Hotellier M, Lhoste J, Nominé G, Pastre P, Piedallu C, Roa L, Scheid JP, Tessier J (1982) Deltamethrin. Roussel-Uclaf, p 412Google Scholar
  15. Chamberlain K, Matsuo N, Kaneko H, Khambay BPS (1998) Pyrethroids. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 9–84Google Scholar
  16. Chemical Computing Group, Inc. (2010) Montreal, Canada, Molecular operating environment. ver 2010.10Google Scholar
  17. Clark T, Deas AHB (1985) Separation of enantiomers of fungicides and some analogues by capillary gas chromatography using Chirasil Val. J Chromatogr 329:181–185CrossRefGoogle Scholar
  18. De Vries JX, Völker U (1989) Separation of the enantiomers of phenprocoumon and warfarin by high-performance liquid chromatography using a chiral stationary phase. Determination of the enantiomeric ratio of phenprocoumon in plasma and urine. J Chromatogr 493:149–156CrossRefGoogle Scholar
  19. Deas AHB, Carter GA, Clark T, Clifford DR, James CS (1986) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi III. Relationship with sensitivity to triadimefon. Pest Biochem Physiol 26:10–21CrossRefGoogle Scholar
  20. Deas AHB, Clark T, Carter GA (1984a) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi. Part I: Influence of dose and time of incubation. Pest Sci 15:63–70CrossRefGoogle Scholar
  21. Deas AHB, Clark T, Carter GA (1984b) The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi. Part II: Differences between fungal species. Pest Sci 15:71–77CrossRefGoogle Scholar
  22. Eble JN, West BD, Link KP (1966) A comparison of the isomers of warfarin. Biochem Pharmacol 15:1003–1006CrossRefGoogle Scholar
  23. Eliel EL, Wilen SH, Mander LN (1994) Stereochemistry of organic compounds. Wiley, New York, p 1267Google Scholar
  24. EPA Pesticides Customer Service (2011) Ticket #23002-242301 response sent. Email to Ulrich EM on 30 July 2011Google Scholar
  25. Feher M, Schmidt JM (2003) Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227CrossRefGoogle Scholar
  26. Fuchs A (1988) Implications of stereoisomerism in agricultural fungicides. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: Biological and chemical problems. Elsevier, Amsterdam, pp 203–262Google Scholar
  27. Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Phytodegradation of p,p′-DDT and the enantiomers of o,p′-DDT. Environ Sci Technol 34:1663–1670CrossRefGoogle Scholar
  28. Haga T, Crosby KE, Schussler JR, Palmer CJ, Yoshii H, Kimura F (1998) Aryloxyphenoxypropanoate herbicides. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 175–197Google Scholar
  29. Heeb NV, Bernd Schweizer W, Mattrel P, Haag R, Kohler M (2007) Crystal structure analysis of enantiomerically pure (+) and (−) [beta]-hexabromocyclododecanes. Chemosphere 66:1590–1594CrossRefGoogle Scholar
  30. Hirashima A, Ishaaya I, Ueno R, Ichiyama Y, Wu SY, Eto M (1989) Biological activity of optically active salithion and salioxon. Agric Biol Chem 53:175–178CrossRefGoogle Scholar
  31. Hühnerfuss H, Shah MR (2009) Enantioselective chromatography—a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental pollutants. J Chromatogr A 1216:481–502CrossRefGoogle Scholar
  32. IUPAC (2006) IUPAC gold book. Accessed on March 2011
  33. Kallenborn R, Hühnerfuss H (2001) Chiral environmental pollutants: trace analysis and ecotoxicology. Springer, Berlin, p 209Google Scholar
  34. Kohler HPE, Nickel K, Bunk M, Zipper C (1998) Microbial transformation of the chiral pollutants mecoprop and dichlorprop—the necessity of considering stereochemistry. In: Fass R, Flashner Y, Reuveny S (eds) Novel approaches for bioremediation of organic pollution. Plenum, New York, pp 13–20Google Scholar
  35. Konwick BJ, Fisk AT, Garrison AW, Avants JK, Black MC (2005) Acute enantioselective toxicity of fipronil and its desulfinyl photoproduct to ceriodaphnia dubia. Environ Toxicol Chem 24:2350–2355CrossRefGoogle Scholar
  36. Koppenhoefer B, Graf R, Holzschuh H, Nothdurft A, Trettin U, Piras P, Roussel C (1994) CHIRBASE, a molecular database for the separation of enantiomers by chromatography. J Chromatogr 666:557–563CrossRefGoogle Scholar
  37. Koppenhoefer B, Nothdurft A, Pierrot-Sanders J, Piras P, Popescu C, Roussel C, Stiebler M, Trettin U (1993) CHIRBASE, a graphical molecular database on the separation of enantiomers by liquid-, supercritical fluid-, and gas chromatography. Chirality 5:213–219CrossRefGoogle Scholar
  38. Kurihara N, Miyamoto J, Paulson GD, Zeeh B, Skidmore MW, Hollingworth RM, Kuiper HA (1997) Chirality in synthetic agrochemicals: bioactivity and safety consideration. Pure Appl Chem 69:2007–2025CrossRefGoogle Scholar
  39. Kurt-Karakus PB, Stroud JL, Bidleman T, Semple KT, Jantunen L, Jones KC (2007) Enantioselective degradation of organochlorine pesticides in background soils: variability in field and laboratory studies. Environ Sci Technol 41:4965–4971CrossRefGoogle Scholar
  40. Lee PW, Allahyari R, Fukuto TR (1978) Studies on the chiral isomers of fonofos and fonofos oxon: II. In vitro metabolism. Pest Biochem Physiol 8:158–169CrossRefGoogle Scholar
  41. Liu W, Qin S, Gan J (2005) Chiral stability of synthetic pyrethroid insecticides. J Agric Food Chem 53:3814–3820CrossRefGoogle Scholar
  42. Mann PJ (2006) The e-pesticide manual. ver 4.0.Google Scholar
  43. Mislow K (1965) Introduction to stereochemistry. W.A. Benjamin, Inc., New York, p 193Google Scholar
  44. Mori K (1997) Pheromones: synthesis and bioactivity. Chem Commun 13:1153–1158CrossRefGoogle Scholar
  45. Müller MD, Buser HR (1997) Conversion reactions of various phenoxyalkanoic acid herbicides in soil. 1. Enantiomerization and enantioselective degradation of the chiral 2-phenoxypropionic acid herbicides. Environ Sci Technol 31:1953–1959CrossRefGoogle Scholar
  46. Müller RH, Babel W (1999) Separation of two dichlorprop/α-ketoglutarate dioxygenases with enantiospecific properties from Comamonas acidovorans MC1. Acta Biotechnol 19:349–355CrossRefGoogle Scholar
  47. Müller TA, Kohler HPE (2004) Chirality of pollutants—effects on metabolism and fate. Appl Microbiol Biotechnol 64:300–316CrossRefGoogle Scholar
  48. Mustaparta H, Angst ME, Lanier GN (1980) Receptor discrimination of enantiomers of the aggregation pheromone ipsdienol in two species of Ips. J Chem Ecol 6:689–701CrossRefGoogle Scholar
  49. Naber JD, van Rensen JJS (1988) The role of stereoselectivity in the action of herbicides and other pesticides. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: biological and chemical problems. Elsevier, Amsterdam, pp 263–287Google Scholar
  50. Nasipuri D (1991) Stereochemistry of organic compounds: principles and applications. Wiley, New York, p 585Google Scholar
  51. Nickel K, Suter MJF, Kohler HPE (1997) Involvement of two α-ketoglutarate-dependent dioxygenases in enantioselective degradation of (R)- and (S)-mecoprop by Sphingomonas herbicidovorans MH. J Bacteriol 179:6674–6679Google Scholar
  52. Nomeir AA, Dauterman WC (1979) Studies on the optical isomers of EPN and EPNO. Pestic Biochem Physiol 10:121–127CrossRefGoogle Scholar
  53. Park BK (1988) Warfarin: metabolism and mode of action. Biochem Pharmacol 37:19–27CrossRefGoogle Scholar
  54. Payne TL, Richerson JV, Dickens JC, West JR, Mori K, Berisford CW, Hedden RL, Vité JP, Blum MS (1982) Southern pine beetle: olfactory receptor and behavior discrimination of enantiomers of the attractant pheromone frontalin. J Chem Ecol 8:873–881CrossRefGoogle Scholar
  55. Qin S, Gan J (2007) Abiotic enantiomerization of permethrin and cypermethrin: effects of organic solvents. J Agric Food Chem 55:5734–5739CrossRefGoogle Scholar
  56. Ridal JJ, Bidleman TF, Kerman B, Fox ME, Strachan WMJ (1997) Enantiomers of alpha-HCH as tracers of air-water gas exchange in Lake Ontario. Environ Sci Technol 31:1940–1945CrossRefGoogle Scholar
  57. Royal Society of Chemistry (2008) ChemSpider—database of chemical structures and property predictions. Access on March 2011
  58. Ruzo LO, Holmstead RL, Casida JE (1977) Pyrethroid photochemistry: decamethrin. J Agric Food Chem 25:1385–1394CrossRefGoogle Scholar
  59. Sasaki M (1998) Importance of chirality in organophosphorus agrochemicals. In: Kurihara N, Miyamoto J (eds) Chirality in agrochemicals. Wiley, Chinchester, pp 85–139Google Scholar
  60. Stanley JK, Brooks BW (2009) Perspectives on ecological risk assessment of chiral compounds. Integr Environ Assess Manage 5:364–373CrossRefGoogle Scholar
  61. Tang W, Muderawan IW, Ong TT, Ng SC (2005) Enantioseparation of acidic enantiomers in capillary electrophoresis using a novel single-isomer of positively charged β-cyclodextrin: mono-6A-N-pentylammonium-6A-deoxy-β-cyclodextrin chloride. J Chromatogr A 1091:152–157CrossRefGoogle Scholar
  62. Ulrich EM, Hites RA (1998) Enantiomeric ratios of chlordane-related compounds in air near the Great Lakes. Environ Sci Technol 32:1870–1874CrossRefGoogle Scholar
  63. Vetter W (1993) Toxaphene. Theoretical aspects of the distribution of chlorinated bornanes including symmetrical aspects. Chemosphere 26:1079–1084CrossRefGoogle Scholar
  64. Vetter W, Bartha R, Stern G, Tomy G (1999) Enantioselective determination of two persistent chlorobornane congeners in sediment from a toxaphene treated Yukon lake. Environ Toxicol Chem 18:2775–2781CrossRefGoogle Scholar
  65. Vetter W, Klobes U, Hummert K, Luckas B (1997) Gas chromatographic separation of chiral organochlorines on modified cyclodextrin phases and results of marine biota samples. J High Resol Chromatogr 20:85–93CrossRefGoogle Scholar
  66. Vijverberg HPM, Oortgiesen M (1988) Steric structure and action of pyrethroids. In: Ariëns EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of pesticides: biological and chemical problems. Elsevier, Amsterdam, pp 151–182Google Scholar
  67. Vité JP, Hedden R, Mori K (1976) Ips grandicollis: field response to the optically pure pheromone. Naturwissenschaften 63:43–44CrossRefGoogle Scholar
  68. Wade LG (1991) Stereochemistry: organic chemistry. Prentice Hall, Englewood Cliffs, pp 223–276Google Scholar
  69. Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ Sci Technol 32:2197–2206CrossRefGoogle Scholar
  70. Williams A (1992) Agrochemical chirality. Managing Resources Ltd., London, p 95Google Scholar
  71. Williams A (1996) Review- Opportunities for chiral agrochemicals. Pest Sci 46:3–9CrossRefGoogle Scholar
  72. Williams A (1997) Chiral pesticides. Pest Outlook 8:15–19Google Scholar
  73. Wood A (1995–2010) Compendium of Pesticide Common Names. Access on March 2011
  74. Wood DL, Browne LE, Ewing B, Lindahl K, Bedard WD, Tilden PE, Mori K, Pitman GB, Hughes PR (1976) Western pine beetle: Specificty among enantiomers of male and female components of an attractant pheromone. Science 192:896–898CrossRefGoogle Scholar
  75. Zipper C, Bunk M, Zehnder AJB, Kohler HPE (1998) Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 180:3368–3374Google Scholar
  76. Zipper C, Nickel K, Angst W, Kohler HPE (1996) Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propionic acid] in an enantioselective manner by Sphingomonas herbicidovorans sp. nov. Appl Environ Microbiol 62:4318–4322Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elin M. Ulrich
    • 1
  • Candice N. Morrison
    • 3
    • 4
  • Michael R. Goldsmith
    • 2
  • William T. Foreman
    • 5
  1. 1.U.S. Environmental Protection Agency (EPA)Research Triangle ParkUSA
  2. 2.U.S. Environmental Protection Agency (EPA)Research Triangle ParkUSA
  3. 3.Student Contractor to the U.S. EPAAshevilleUSA
  4. 4.Department of Soil, Water, and Environmental ScienceThe University of ArizonaTusconUSA
  5. 5.U.S. Geological Survey, National Water Quality LaboratoryDenverUSA

Personalised recommendations