Advertisement

Scheduling On-demand SaaS Services on a Shared Virtual Cluster

  • Rodrigue Chakode
  • Jean-François Méhaut
  • Blaise-Omer Yenke
Chapter
Part of the Service Science: Research and Innovations in the Service Economy book series (SSRI)

Abstract

In this chapter, we propose a framework to set up on-demand computation-based SaaS services on a computing cluster shared among services of distinct providers, which invest to purchase, to maintain and to keep the cluster up. We focus especially on resource management which appears as a critical point. Indeed, it must satisfy two conflicting objectives, which aim at sharing the cluster’s resources proportionally among the different services while maximizing their use. We first suggest a model that relies on virtual machines to execute the jobs associated to services requests. Its software architecture comprises a specific scheduler designed upon OpenNebula to deal with SaaS request handling, job scheduling, resource management, and job execution. We then propose for resource management, a job scheduling heuristic that introduces a smart tradeoff in a classical static approach resource sharing to satisfy the aforementioned objectives. We have built a prototype (SVMSched) of the proposed framework, that is evaluated using trace-based simulation on various workload scenarios. Experimental results show its ability to achieve the expected goals, while being reliable, efficient.

Keywords

On-demand Software-as-a-Service Cloud computing Virtualization Resource sharing Scheduling 

Notes

Acknowledgements

This work is funded by the world competitiveness business cluster Minalogic (http://minalogic.com), which fosters research-led innovation in intelligent miniaturized products and solutions for industry.

References

  1. 1.
    Adobe PDF Online. http://createpdf.adobe.com/
  2. 2.
    An API for virtual I/O: virtio. http://lwn.net/Articles/239238/
  3. 3.
    Enomaly Home. http://www.enomaly.com
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
  10. 10.
  11. 11.
    AMD: Amd64 virtualization codenamed asia pacific technology: Secure virtual machine architecture reference manual (Publication No. 33047, Revision 3.01) (May 2005), http://www.mimuw.edu.pl/~vincent/lecture6/sources/amd-pacifica-specific%ation.pdfGoogle Scholar
  12. 12.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating systems principles. pp. 164–177. ACM (2003)Google Scholar
  13. 13.
    Borja, S., Kate, K., Ian, F., Tim, F.: Enabling cost-effective resource leases with virtual machines. In: Hot Topics session in ACM/IEEE International Symposium on High Performance Distributed Computing (2007)Google Scholar
  14. 14.
    Chakode, R.: SVMSched : a tool to enable On-demand SaaS and PaaS on top of OpenNebula. OpenNebula Blog (http://blogopennebulaorg/?p=1646,June2011)
  15. 15.
    Chakode, R., Méhaut, J. F., Charlet, F.: High Performance Computing on Demand: Sharing and Mutualization of Clusters. In: Proceedings of the 24th IEEE International conference on Advanced Information Networking and Applications. pp. 126–133 (2010)Google Scholar
  16. 16.
    Gene K. Landy, A. J. M.: The IT / Digital Legal Companion: A Comprehensive Business Guide to Software, IT, Internet, Media and IP Law, pp. 351–374. Burlington: Elsevier (2008)Google Scholar
  17. 17.
    Intel Corporation: Intel Virtualization Technology. Intel Technology Journal 10(3) (August 2006), http://www.intel.com/technology/itj/2006/v10i3/1-hardware/3-software.htm
  18. 18.
    Jackson, D. B., Snell, Q., Clement, M. J.: Core algorithms of the maui scheduler. In: Revised Papers from the 7th International Workshop on Job Scheduling Strategies for Parallel Processing. pp. 87–102. Springer (2001)Google Scholar
  19. 19.
  20. 20.
    Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (January 1988), http://dx.doi.org/10.1145/35043.35047Google Scholar
  21. 21.
    Keahey, K., Foster, I., Freeman, T., Zhang, X.: Virtual workspaces: Achieving quality of service and quality of life in the grid. Sci. Program. 13, 265–275 (2005)Google Scholar
  22. 22.
    Lawson, B. G., Smirni, E.: Multiple-queue backfilling scheduling with priorities and reservations for parallel systems. In: In Job Scheduling Strategies for Parallel Processing. pp. 72–87. Springer-Verlag (2002)Google Scholar
  23. 23.
    Li, L., Franks, G.: Performance modeling of systems using fair share scheduling with layered queueing networks. In: Modeling, Analysis Simulation of Computer and Telecommunication Systems. MASCOTS ’09, IEEE International Symposium on. pp. 1 –10 (sept 2009)Google Scholar
  24. 24.
    Mergen, M. F., Uhlig, V., Krieger, O., Xenidis, J.: Virtualization for high-performance computing. SIGOPS Oper. Syst. Rev. 40(2), 8–11 (2006)CrossRefGoogle Scholar
  25. 25.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. In: 9th IEEE/ACM International Symposium on Cluster Computing and the Grid. vol. 0, pp. 124–131. IEEE (2009), http://dx.doi.org/10.1109/CCGRID.2009.93
  26. 26.
    Sotomayor, B., Montero, R. S., Foster, I.: An Open Source Solution for Virtual Infrastructure Management in Private and Hybrid Clouds. Preprint ANL/MCS-P1649-0709 13 (2009), www.mcs.anl.gov/uploads/cels/papers/P1649.pdf
  27. 27.
    Sotomayor, B., Montero, R. S., Llorente, I. M., Foster, I.: Virtual Infrastructure Management in Private and Hybrid Clouds. IEEE Internet Computing 13, 14–22 (2009)CrossRefGoogle Scholar
  28. 28.
    Turner, M., Budgen, D., Brereton, P.: Turning Software into a Service. Computer 36(10), 38–44 (2003)Google Scholar
  29. 29.
    Vaquero, L. M., Rodero-M., L., Caceres, J., Lindner, M.: A break in the clouds: towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55 (2009)Google Scholar
  30. 30.
    Weissman, C. D., Bobrowski, S.: The design of the force.com multitenant internet application development platform. In: SIGMOD ’09: Proceedings of the 35th SIGMOD international conference on Management of data. pp. 889–896. ACM (2009)Google Scholar
  31. 31.
    Yu, W., Vetter, J. S.: Xen-Based HPC: A Parallel I/O Perspective. Cluster Computing and the Grid, IEEE International Symposium on 0, 154–161 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rodrigue Chakode
    • 1
  • Jean-François Méhaut
    • 1
  • Blaise-Omer Yenke
    • 2
  1. 1.INRIA, LIG LaboratoryUniversity of GrenobleGrenobleFrance
  2. 2.UIT, University of Ngaoundere and UMMISCO, University of Yaounde IYaoundeCameroon

Personalised recommendations