Skip to main content

Macrophage-Targeted Nanoparticle Delivery Systems

  • Chapter
  • First Online:
Multifunctional Nanoparticles for Drug Delivery Applications

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Monocytes and macrophages originate from the mononuclear phagocyte system and form the basis of immune defense system of the body. These cells are distributed throughout the body, are highly diverse functionally, and work in conjunction with other cells in restoring the physiological homeostasis. The three major goals of macrophages are phagocytosis, antigen presentation, and modulation of the immune response. With greater understanding of the macrophage biology and role in the body, there is an opportunity to target imaging and therapeutic agents directly to these cells upon local or systemic administration. Multifunctional nanotechnology has already shown tremendous promise in the field of targeted delivery for various diseases. The use of targeted nanosystems is extended to macrophages with the intent to prevent, using effective vaccination or diagnosis, and treat inflammatory diseases, cancer, and cardiovascular diseases. In this chapter, we have summarized the role of macrophages, advantage of nanosystems in delivery of vaccines, drugs, and nucleic acid constructs, criteria for macrophage targeting, various nanoplatforms available to target macrophages, and illustrative examples that have shown the imaging and therapeutic benefits of targeting these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 5:281–286(3)

    Google Scholar 

  2. Ross JA, Auger MJ (2002) The biology of the macrophage. In: Burke B, Lewis CE (eds) The macrophage, 2nd edn. Oxford University Press, New York, pp 16–23

    Google Scholar 

  3. Lopes MF, Freire-De-Lima CG, Dosreis GA (2000) The macrophage haunted by cell ghosts: a pathogen grows. Immunol Today 21(10):489–494

    Google Scholar 

  4. Hamilton TA (2002) Molecular basis of macrophage activation: from gene expression to phenotypic diversity. In: Burke B, Lewis CE (eds) The macrophage, 2nd edn. Oxford University Press, New York, pp 74–75

    Google Scholar 

  5. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686

    Google Scholar 

  6. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35

    Google Scholar 

  7. Wilson HM, Barker RN, Erwig LP (2009) Macrophages: promising targets for the treatment of atherosclerosis. Curr Vasc Pharmacol 7(2):234–243

    Google Scholar 

  8. Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212

    Google Scholar 

  9. Rosenberger CM, Finlay BB (2003) Phagocyte sabotage: disruption of macrophage signaling by bacterial pathogens. Nat Rev Mol Cell Biol 4(5):385–396

    Google Scholar 

  10. Owais M, Gupta CM (2005) Targeted drug delivery to macrophages in parasitic infections. Curr Drug Deliv 2(4):311–318

    Google Scholar 

  11. Germann WJ, Stanfield CL, Cannon JG, Niles MJ (2002) The immune system. In: Brassert C (ed) Principles of human physiology. Benjamin Cummings Publishing Co, San Francisco, pp 708–740

    Google Scholar 

  12. Tanner AR, Arthur MJ, Wright R (1984) Macrophage activation, chronic inflammation and gastrointestinal disease. Gut 25(7):760–783

    Google Scholar 

  13. Figarella-Branger D, Civatte M, Bartoli C, Pellissier JF (2003) Cytokines, chemokines, and cell adhesion molecules in inflammatory myopathies. Muscle Nerve 28(6):659–682

    Google Scholar 

  14. Godillot AP, Madaio M, Weiner DB, William VW (2000) DNA vaccination as anti-inflammatory strategy. In: Evans CH, Robbins PD (eds) Gene therapy in inflammatory diseases. Birhauser Verlag, Basel, pp 205–230

    Google Scholar 

  15. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am J Pathol 167(3):627–635

    Google Scholar 

  16. Ono M (2008) Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci 99(8):1501–1506

    Google Scholar 

  17. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612

    Google Scholar 

  18. Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7(2):177–189

    Google Scholar 

  19. Elgert KD, Alleva DG, Mullins DW (1998) Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64(3):275–290

    Google Scholar 

  20. Herbein G, Coaquette A, Perez-Bercoff D, Pancino G (2002) Macrophage activation and HIV infection: can the Trojan horse turn into a fortress? Curr Mol Med 2(8):723–738

    Google Scholar 

  21. Guidi-Rontani C (2002) The alveolar macrophage: the Trojan horse of bacillus anthracis. Trends Microbiol 10(9):405–409

    Google Scholar 

  22. Nguyen L, Pieters J (2005) The Trojan horse: survival tactics of pathogenic mycobacteria in macrophages. Trends Cell Biol 15(5):269–276

    Google Scholar 

  23. Verani A, Gras G, Pancino G (2005) Macrophages and HIV-1: dangerous liaisons. Mol Immunol 42(2):195–212

    Google Scholar 

  24. Herbein G, Varin A (2010) The macrophage in HIV-1 infection: from activation to deactivation? Retrovirology 7(33):1–15

    Google Scholar 

  25. Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC (2008) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769

    Google Scholar 

  26. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97(6):1184–1190

    Google Scholar 

  27. Rawat M, Singh D, Saraf S, Saraf S (2006) Nanocarriers: promising vehicle for bioactive drugs. Biol Pharm Bull 29(9):1790–1798

    Google Scholar 

  28. Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22(2):129–150

    Google Scholar 

  29. Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Deliv Rev 58(14):1532–1555

    Google Scholar 

  30. Moghimi SM, Hunter AC, Murray JC (2001) Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 53(2):283–318

    Google Scholar 

  31. Vasir JK, Reddy MK, Labhasetwar VD (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1(1):47–64

    Google Scholar 

  32. Gupta S, Dube A, Vyas SP (2007) Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis. J Drug Target 15(6):437–444

    Google Scholar 

  33. Corvo ML, Boerman OC, Oyen WJ, Van Bloois L, Cruz ME, Crommelin DJ, Storm G (1999) Intravenous administration of superoxide dismutase entrapped in long circulating liposomes. II. In vivo fate in a rat model of adjuvant arthritis. Biochim Biophys Acta 1419(2):325–334

    Google Scholar 

  34. Boerman OC, Oyen WJ, Storm G, Corvo ML, Van Bloois L, Van Der Meer JW, Corstens FH (1997) Technetium-99m labelled liposomes to image experimental arthritis. Ann Rheum Dis 56(6):369–373

    Google Scholar 

  35. Löbenberg R, Araujo L, Kreuter J (1997) Body distribution of azidothymidine bound to nanoparticles after oral administration. Eur J Pharm Biopharm 44(2):127–132

    Google Scholar 

  36. Nie S, Xing Y, Kim GJ, Simons JW (2007) Nanotechnology applications in cancer. Annu Rev Biomed Eng 9:257–288

    Google Scholar 

  37. Mukhopadhyay A, Basu SK (2003) Intracellular delivery of drugs to macrophages. Adv Biochem Eng Biotechnol 84:183–209

    Google Scholar 

  38. Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL, Martinez-Pomares L, Wong SY, Gordon S (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196(3):407–412

    Google Scholar 

  39. Herre J, Gordon S, Brown GD (2004) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40(12):869–876

    Google Scholar 

  40. Najjar VA (1983) Tuftsin, a natural activator of phagocyte cells: an overview. Ann N Y Acad Sci 419:1–11

    Google Scholar 

  41. Fridkin M, Najjar VA (1989) Tuftsin: its chemistry, biology, and clinical potential. Crit Rev Biochem Mol Biol 24(1):1–40

    Google Scholar 

  42. Naor D, Nedvetzki S (2003) CD44 in rheumatoid arthritis. Arthritis Res Ther 5(3):105–115

    Google Scholar 

  43. Vachon E, Martin R, Plumb J, Kwok V, Vandivier RW, Glogauer M, Kapus A, Wang X, Chow CW, Grinstein S, Downey GP (2006) CD44 is a phagocytic receptor. Blood 107(10):4149–4158

    Google Scholar 

  44. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Control Rel 79(1–3):29–40

    Google Scholar 

  45. Kaur A, Jain S, Tiwary AK (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 58(1):61–74

    Google Scholar 

  46. Jain SK, Gupta Y, Jain A, Saxena AR, Khare P, Jain A (2008) Mannosylated gelatin nanoparticles bearing an anti-HIV drug didanosine for site-specific delivery. Nanomedicine 4(1):41–48

    Google Scholar 

  47. Schmitt F, Lagopoulos L, Kauper P, Rossi N, Busso N, Barge J, Wagnieres G, Laue C, Wandrey C, Juillerat-Jeanneret L (2010) Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J Control Rel 144(2):242–250

    Google Scholar 

  48. Chellat F, Merhi Y, Moreau A, Yahia L (2005) Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 26(35):7260–7275

    Google Scholar 

  49. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263

    Google Scholar 

  50. Allen TM, Austin GA, Chonn A, Lin L, Lee KC (1991) Uptake of liposomes by cultured mouse bone marrow macrophages: influence of liposome composition and size. Biochim Biophys Acta 1061(1):56–64

    Google Scholar 

  51. Schäfer V, von Briesen H, Andreesen R, Steffan AM, Royer C, Troster S, Kreuter J, Rübsamen-Waigmann H (1992) Phagocytosis of nanoparticles by human immunodeficiency virus (HIV)-infected macrophages: a possibility for antiviral drug targeting. Pharm Res 9(4):541–546

    Google Scholar 

  52. Tabata Y, Ikada Y (1988) Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials 9(4):356–362

    Google Scholar 

  53. Azad N, Rojanasakul Y (2006) Vaccine delivery-current trends and future. Curr Drug Deliv 3(2):137–146

    Google Scholar 

  54. Chadwick S, Kriegel C, Amiji M (2009) Delivery strategies to enhance mucosal vaccination. Expert Opin Biol Ther 9(4):427–440

    Google Scholar 

  55. Srivastava IK, Singh M (2005) DNA vaccines: focus on increasing potency and efficacy. Int J Pharm Med 19(1):15–28

    Google Scholar 

  56. Singh M, O’Hagan DT (2002) Recent advances in vaccine adjuvants. Pharm Res 19(6):715–728

    Google Scholar 

  57. Singh J, Pandit S, Bramwell VW, Alpar HO (2006) Diphtheria toxoid loaded poly-(epsilon-caprolactone) nanoparticles as mucosal vaccine delivery systems. Methods 38(2):96–105

    Google Scholar 

  58. Tobio M, Sanchez A, Vila A, Soriano II, Evora C, Vila-Jato JL, Alonso MJ (2000) The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids Surf B Biointerfaces 18(3–4):315–323

    Google Scholar 

  59. Garinot M, Fievez V, Pourcelle V, Stoffelbach F, Des Rieux A, Plapied L, Theate I, Freichels H, Jerome C, Marchand-Brynaert J, Schneider YJ, Preat V (2007) PEGylated PLGA-based nanoparticles targeting M-cells for oral vaccination. J Control Rel 120(3):195–204

    Google Scholar 

  60. Sayin B, Somavarapu S, Li XW, Sesardic D, Senel S, Alpar OH (2009) TMC-MCC (N-trimethyl chitosan-mono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 38(4):362–369

    Google Scholar 

  61. Wu F, Wuensch SA, Azadniv M, Ebrahimkhani MR, Crispe IN (2009) Galactosylated LDL nanoparticles: a novel targeting delivery system to deliver antigen to macrophages and enhance antigen specific T cell responses. Mol Pharmaceutics 6(5):1506–1517

    Google Scholar 

  62. Jung T, Kamm W, Breitenbach A, Hungerer KD, Hundt E, Kissel T (2001) Tetanus toxoid loaded nanoparticles from sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide): evaluation of antibody response after oral and nasal application in mice. Pharm Res 18(3):352–360

    Google Scholar 

  63. Lambros MP, Schafer F, Blackstock R, Murphy JW (1998) Liposomes, a potential immunoadjuvant and carrier for a cryptococcal vaccine. J Pharm Sci 87(9):1144–1148

    Google Scholar 

  64. Ge W, Li Y, Li ZS, Zhang SH, Sun YJ, Hu PZ, Wang XM, Huang Y, Si SY, Zhang XM, Sui YF (2009) The antitumor immune responses induced by nanoemulsion-encapsulated MAGE1-HSP70/SEA complex protein vaccine following peroral administration route. Cancer Immunol Immunother 58(2):201–208

    Google Scholar 

  65. He Q, Mitchell A, Morcol T, Bell SJ (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clin Diagn Lab Immunol 9(5):1021–1024

    Google Scholar 

  66. Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354(1–2):235–241

    Google Scholar 

  67. Roy K, Mao HQ, Huang SK, Leong KW (1999) Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387–391

    Google Scholar 

  68. Lu Y, Kawakami S, Yamashita F, Hashida M (2007) Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials 28(21):3255–3262

    Google Scholar 

  69. Tang CK, Lodding J, Minigo G, Pouniotis DS, Plebanski M, Scholzen A, Mckenzie IF, Pietersz GA, Apostolopoulos V (2007) Mannan-mediated gene delivery for cancer immunotherapy. Immunology 120(3):325–335

    Google Scholar 

  70. Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330

    Google Scholar 

  71. Lipinski MJ, Frias JC, Amirbekian V, Briley-Saebo KC, Mani V, Samber D, Abbate A, Aguinaldo JG, Massey D, Fuster V, Vetrovec GW, Fayad ZA (2009) Macrophage-specific lipid-based nanoparticles improve cardiac magnetic resonance detection and characterization of human atherosclerosis. JACC Cardiovasc Imaging 2(5):637–647

    Google Scholar 

  72. Fabien H, Jean-Christophe C, Jonathan FE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13(5):636–641

    Google Scholar 

  73. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, Libby P, Swirski FP, Weissleder R (2007) Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 117:379–387

    Google Scholar 

  74. Lipinski MJ, Amirbekian V, Frias JC, Aguinaldo JG, Mani V, Briley-Saebo KC, Fuster V, Fallon JT, Fisher EA, Fayad ZA (2006) MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn Reson Med 56(3):601–610

    Google Scholar 

  75. Amirbekian V, Lipinski MJ, Briley-Saebo KC, Amirbekian S, Aguinaldo JG, Weinreb DB, Vucic E, Frias JC, Hyafil F, Mani V, Fisher EA, Fayad ZA (2007) Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci USA 104(3):961–966

    Google Scholar 

  76. Ma LL, Feldman MD, Tam JM, Paranjape AS, Cheruku KK, Larson TA, Tam JO, Ingram DR, Paramita V, Villard JW, Jenkins JT, Wang T, Clarke GD, Asmis R, Sokolov K, Chandrasekar B, Milner TE, Johnston KP (2009) Small multifunctional nanoclusters (nanoroses) for targeted cellular imaging and therapy. ACS Nano 3(9):2686–2696

    Google Scholar 

  77. Kim JS, An H, Rieter WJ, Esserman D, Taylor-Pashow KM, Sartor RB, Lin W, Lin W, Tarrant TK (2009) Multimodal optical and Gd-based nanoparticles for imaging in inflammatory arthritis. Clin Exp Rheumatol 27(4):580–586

    Google Scholar 

  78. Lutz AM, Seemayer C, Corot C, Gay RE, Goepfert K, Michel BA, Marincek B, Gay S, Weishaupt D (2004) Detection of synovial macrophages in an experimental rabbit model of antigen-induced arthritis: ultrasmall superparamagnetic iron oxide-enhanced MR imaging. Radiology 233(1):149–157

    Google Scholar 

  79. Heinzen RA, Scidmore MA, Rockey DD, Hackstadt T (1996) Differential interaction with endocytic and exocytic pathways distinguish parasitophorous vacuoles of Coxiella burnetii and Chlamydia trachomatis. Infect Immun 64(3):796–809

    Google Scholar 

  80. Khan MA, Owais M (2006) Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model. J Antimicrob Chemother 58(1):125–132

    Google Scholar 

  81. Gagne JF, Desormeaux A, Perron S, Tremblay MJ, Bergeron MG (2002) Targeted delivery of indinavir to HIV-1 primary reservoirs with immunoliposomes. Biochim Biophys Acta 1558(2):198–210

    Google Scholar 

  82. Nimje N, Agarwal A, Saraogi GK, Lariya N, Rai G, Agrawal H, Agrawal GP (2009) Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. J Drug Target 17(10):777–787

    Google Scholar 

  83. Wijagkanalan W, Higuchi Y, Kawakami S, Teshima M, Sasaki H, Hashida M (2008) Enhanced anti-inflammation of inhaled dexamethasone palmitate using mannosylated liposomes in an endotoxin-induced lung inflammation model. Mol Pharmacol 74(5):1183–1192

    Google Scholar 

  84. Chono S, Tanino T, Seki T, Morimoto K (2008) Efficient drug targeting to rat alveolar macrophages by pulmonary administration of ciprofloxacin incorporated into mannosylated liposomes for treatment of respiratory intracellular parasitic infections. J Control Release 127(1):50–58

    Google Scholar 

  85. Lobenberg R, Araujo L, von Briesen H, Rodgers E, Kreuter J (1998) Body distribution of azidothymidine bound to hexyl-cyanoacrylate nanoparticles after i.v. injection to rats. J Control Release 50(1–3):21–30

    Google Scholar 

  86. Agarwal A, Kandpal H, Gupta HP, Singh NB, Gupta CM (1994) Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrob Agents Chemother 38(3):588–593

    Google Scholar 

  87. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J Biomed Mater Res A 82(1):92–103

    Google Scholar 

  88. Hu J, Liu H, Wang L (2000) Enhanced delivery of AZT to macrophages via acetylated LDL. J Control Release 69(3):327–335

    Google Scholar 

  89. Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjallman AH, Ballmer-Hofer K, Schwendener RA (2006) Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach. Br J Cancer 95(3):272–281

    Google Scholar 

  90. Dembri A, Montisci MJ, Gantier JC, Chacun H, Ponchel G (2001) Targeting of 3′-azido 3′-deoxythymidine (AZT)-loaded poly(isohexylcyanoacrylate) nanospheres to the gastrointestinal mucosa and associated lymphoid tissues. Pharm Res 18(4):467–473

    Google Scholar 

  91. Burke B, Sumner S, Maitland N, Lewis CE (2002) Macrophages in gene therapy: cellular delivery vehicles and in vivo targets. J Leukoc Biol 72(3):417–428

    Google Scholar 

  92. Singh M, Chakrapani A, O’Hagan D (2007) Nanoparticles and microparticles as vaccine-delivery systems. Expert Rev Vaccines 6(5):797–808

    Google Scholar 

  93. Shahiwala A, Vyas TK, Amiji MM (2007) Nanocarriers for systemic and mucosal vaccine delivery. Recent Pat Drug Deliv Formul 1(1):1–9

    Google Scholar 

  94. Clark MA, Jepson MA, Hirst BH (2001) Exploiting M-cells for drug and vaccine delivery. Adv Drug Deliv Rev 50(1–2):81–106

    Google Scholar 

  95. Hattori Y, Kawakami S, Suzuki S, Yamashita F, Hashida M (2004) Enhancement of immune responses by DNA vaccination through targeted gene delivery using mannosylated cationic liposome formulations following intravenous administration in mice. Biochem Biophys Res Commun 317(4):992–999

    Google Scholar 

  96. Tang CK, Sheng KC, Pouniotis D, Esparon S, Son HY, Kim CW, Pietersz GA, Apostolopoulos V (2008) Oxidized and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine 26(31):3827–3834

    Google Scholar 

  97. Ribeiro S, Rijpkema SG, Durrani Z, Florence AT (2007) PLGA-dendron nanoparticles enhance immunogenicity but not lethal antibody production of a DNA vaccine against anthrax in mice. Int J Pharm 331(2):228–232

    Google Scholar 

  98. Fabien Hyafil J-C, Feig JE, Gordon R, Vucic E, Amirbekian V, Fisher EA, Fuster V, Feldman LJ, Fayad ZA (2007) Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 13(5):636–641

    Google Scholar 

  99. Schroeder S, Kopp AF, Ohnesorge B, Flohr T, Baumbach A, Kuettner A, Herdeg C, Karsch KR, Claussen CD (2001) Accuracy and reliability of quantitative measurements in coronary arteries by multi-slice computed tomography: experimental and initial clinical results. Clin Radiol 56(6):466–474

    Google Scholar 

  100. Pohle K, Achenbach S, Macneill B, Ropers D, Ferencik M, Moselewski F, Hoffmann U, Brady TJ, Jang IK, Daniel WG (2007) Characterization of non-calcified coronary atherosclerotic plaque by multi-detector row CT: comparison to IVUS. Atherosclerosis 190(1):174–180

    Google Scholar 

  101. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97(12):2692–2696

    Google Scholar 

  102. Bayes-Genis A, Campbell JH, Carlson PJ, Holmes DR Jr, Schwartz RS (2002) Macrophages, myofibroblasts and neointimal hyperplasia after coronary artery injury and repair. Atherosclerosis 163(1):89–98

    Google Scholar 

  103. Danenberg HD, Fishbein I, Gao J, Mönkkönen J, Reich R, Gati I, Moerman E, Golomb G (2002) Macrophage depletion by Clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation 106:599–605

    Google Scholar 

  104. Cohen-Sela E, Rosenzweig O, Gao J, Epstein H, Gati I, Reich R, Danenberg HD, Golomb G (2006) Alendronate-loaded nanoparticles deplete monocytes and attenuate restenosis. J Control Release 113(1):23–30

    Google Scholar 

  105. Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J (2009) Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Am Soc Gene Ther 17(1):162–168

    Google Scholar 

  106. Zuo L, Huang Z, Dong L, Xu L, Zhu Y, Zeng K, Zhang C, Chen J, Zhang J (2010) Targeting delivery of anti-TNFalpha oligonucleotide into activated colonic macrophages protects against experimental colitis. Gut 59(4):470–479

    Google Scholar 

  107. Crooke ST (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Google Scholar 

  108. Bhavsar MD, Amiji MM (2008) Oral IL-10 gene delivery in a microsphere-based formulation for local transfection and therapeutic efficacy in inflammatory bowel disease. Gene Ther 15(17):1200–1209

    Google Scholar 

  109. Nakase H, Okazaki K, Tabata Y, Ozeki M, Watanabe N, Ohana M, Uose S, Uchida K, Nishi T, Mastuura M, Tamaki H, Itoh T, Kawanami C, Chiba T (2002) New cytokine delivery system using gelatin microspheres containing interleukin-10 for experimental inflammatory bowel disease. J Pharm Exp Ther 301(1):59–65

    Google Scholar 

  110. Wijagkanalan W, Kawakami S, Higuchi Y, Yamashita F, Hashida M (2011) Intratracheally instilled mannosylated cationic liposome/NFkappaB decoy complexes for effective prevention of LPS-induced lung inflammation. J Control Release 149(1):42–50

    Google Scholar 

  111. Lee S, Yang SC, Kao CY, Pierce RH, Murthy N (2009) Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic Acids Res 37(22):e145

    Google Scholar 

  112. Kawakami S, Sato A, Nishikawa M, Yamashita F, Hashida M (2000) Mannose receptor-mediated gene transfer into macrophages using novel mannosylated cationic liposomes. Gene Ther 7(4):292–299

    Google Scholar 

  113. Ferkol T, Perales JC, Mularo F, Hanson RW (1996) Receptor-mediated gene transfer into macrophages. Proc Natl Acad Sci USA 93(1):101–105

    Google Scholar 

  114. Nakamura K, Kuramoto Y, Mukai H, Kawakami S, Higuchi Y, Hashida M (2009) Enhanced gene transfection in macrophages by histidine-conjugated mannosylated cationic liposomes. Biol Pharm Bull 32(9):1628–1631

    Google Scholar 

  115. Khoury M, Escriou V, Courties G, Galy A, Yao R, Largeau C, Scherman D, Jorgensen C, Apparailly F (2008) Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes. Arthritis Rheum 58(8):2356–2367

    Google Scholar 

  116. Dong L, Gao S, Diao H, Chen J, Zhang J (2008) Galactosylated low molecular weight chitosan as a carrier delivering oligonucleotides to Kupffer cells instead of hepatocytes in vivo. J Biomed Mater Res A 84(3):777–784

    Google Scholar 

  117. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS, Bardhan R, Akin D, Badve S, Sturgis J, Robinson JP, Bashir R, Halas NJ, Clare SE (2007) A cellular Trojan horse for delivery of therapeutic nanoparticles into tumors. Nano Lett 7(12):3759–3765

    Google Scholar 

  118. Miselis NR, Wu ZJ, van Rooijen N, Kane AB (2008) Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther 7(4):788–799

    Google Scholar 

  119. Opanasopit P, Sakai M, Nishikawa M, Kawakami S, Yamashita F, Hashida M (2002) Inhibition of liver metastasis by targeting of immunomodulators using mannosylated liposome carriers. J Control Rel 80(1–3):283–294

    Google Scholar 

  120. Taniyama T, Holden HT (1979) Direct augmentation of cytolytic activity of tumor-derived macrophages and macrophage cell lines by muramyl dipeptide. Cell Immunol 48(2):369–374

    Google Scholar 

  121. Robson T, Hirst DG (2003) Transcriptional targeting in cancer gene therapy. J Biomed Biotechnol 2003(2):110–137

    Google Scholar 

  122. Griffiths L, Binley K, Iqball S, Kan O, Maxwell P, Ratcliffe P, Lewis C, Harris A, Kingsman S, Naylor S (2000) The macrophage—a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7(3):255–262

    Google Scholar 

  123. Mccarthy JR, Jaffer FA, Weissleder R (2006) A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2(8–9):983–987

    Google Scholar 

  124. Demidova TN, Hamblin MR (2004) Macrophage-targeted photodynamic therapy. Int J Immunopathol Pharmacol 17(2):117–126

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Amiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jain, S., Amiji, M. (2012). Macrophage-Targeted Nanoparticle Delivery Systems. In: Svenson, S., Prud'homme, R. (eds) Multifunctional Nanoparticles for Drug Delivery Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-2305-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2305-8_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-2304-1

  • Online ISBN: 978-1-4614-2305-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics