Nanoparticles for Targeted and Temporally Controlled Drug Delivery

  • Archana Swami
  • Jinjun Shi
  • Suresh Gadde
  • Alexander R. Votruba
  • Nagesh Kolishetti
  • Omid C. Farokhzad
Part of the Nanostructure Science and Technology book series (NST)


With advances in nanotechnology, it is now possible to develop highly specific and effective treatments for a myriad of important human diseases including cancer and cardiovascular and inflammatory diseases. One important obstacle in the development of safer and more effective therapeutics has been the challenge of delivering drugs to the site of action at an optimal exposure and rate. The design and development of biocompatible, targeted nanoparticles that control the release of drugs at the site of interest has the potential to revolutionize drug development and enable entirely new therapeutic approaches such as RNA interference (RNAi). This chapter gives an insight into the development of nanoparticle platforms for the targeted and temporally controlled delivery of drugs with minimal off target effects and reviews the available classes of ligands for targeting applications.


  1. 1.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822Google Scholar
  2. 2.
    Wagner V, Dullaart A, Bock A-K, Zweck A (2006) The emerging nanomedicine landscape. Nat Biotechnol 24(10):1211–1217Google Scholar
  3. 3.
    Farokhzad OC, Langer R (2009) Impact of nanotechnology on drug delivery. ACS Nano 3(1):16–20Google Scholar
  4. 4.
    Petros RA, DeSimone JM (2010) Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 9(8):615–627Google Scholar
  5. 5.
    Shi J, Votruba AR, Farokhzad OC, Langer R (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 10(9):3223–3230Google Scholar
  6. 6.
    Cai W, Chen X (2007) Nanoplatforms for targeted molecular imaging in living subjects. Small 3(11):1840–1854MathSciNetGoogle Scholar
  7. 7.
    Gao X et al (2005) In vivo molecular and cellular imaging with quantum dots. Curr Opin Biotechnol 16(1):63–72Google Scholar
  8. 8.
    Davis ME, Chen Z, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782Google Scholar
  9. 9.
    Zhang L et al (2007) Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 83(5):761–769Google Scholar
  10. 10.
    Heath T, Fraley R, Papahdjopoulos D (1980) Antibody targeting of liposomes: cell specificity obtained by conjugation of F(ab′)2 to vesicle surface. Science 210:539–541Google Scholar
  11. 11.
    Leserman LD, Barbet J, Kourilsky F, Weinstein JN (1980) Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A. Nature 288:602–604Google Scholar
  12. 12.
    Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207Google Scholar
  13. 13.
    Chan JM et al (2010) Spatiotemporal controlled delivery of nanoparticles to injured vasculature. Proc Natl Acad Sci USA 107(5):2213–2218Google Scholar
  14. 14.
    Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC (2011) Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 108(5):1850–1855Google Scholar
  15. 15.
    Rothenfluh DA, Bermudez H, O’Neil CP, Hubbell JA (2008) Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat Mater 7(3):248–254Google Scholar
  16. 16.
    Georgieva JV et al (2011) Surface characteristics of nanoparticles determine their intracellular fate in and processing by human blood–brain barrier endothelial cells in vitro. Mol Ther 19(2):318–325MathSciNetGoogle Scholar
  17. 17.
    Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58(14):1456–1459Google Scholar
  18. 18.
    Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651Google Scholar
  19. 19.
    Wang AZ et al (2008) Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther 8(8):1063–1070Google Scholar
  20. 20.
    Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126(3):187–204Google Scholar
  21. 21.
    Kale AA, Torchilin VP (2010) Environment-responsive multifunctional liposomes. Methods Mol Biol 605:213–242Google Scholar
  22. 22.
    Oh KT, Yin H, Lee ES, Bae YH (2007) Polymeric nanovehicles for anticancer drugs with triggering release mechanisms. J Mater Chem 17(38):3987–4001Google Scholar
  23. 23.
    Moghimi SM, Hunter AC, Murray JC (2005) Nanomedicine: current status and future prospects. FASEB J 19(3):311–330Google Scholar
  24. 24.
    Antimisiaris SG, Kallinteri P, Fatouros DG (2007) Liposomes and drug delivery. Wiley, New York, pp 443–533Google Scholar
  25. 25.
    Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478Google Scholar
  26. 26.
    Chowdhery R, Gonzalez R (2011) Immunologic therapy targeting metastatic melanoma: Allovectin-7. Immunotherapy 3(1):17–21Google Scholar
  27. 27.
    Matsumura Y et al (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15(3):517–525MathSciNetGoogle Scholar
  28. 28.
    Sankhala KK, Mita AC, Adinin R, Wood L, Beeram M, Bullock S, Yamagata N, Matsuno K, Fujisawa T, Phan AT (2009) A phase I pharmacokinetic (PK) study of MBP-426, a novel liposome encapsulated oxaliplatin. J Clin Oncol 27(15S):2535Google Scholar
  29. 29.
    Lukyanov AN, Elbayoumi TA, Chakilam AR, Torchilin VP (2004) Tumor-targeted liposomes: doxorubicin-loaded long-circulating liposomes modified with anti-cancer antibody. J Control Release 100(1):135–144Google Scholar
  30. 30.
    Schiffelers RM et al (2003) Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J Control Release 91(1–2):115–122Google Scholar
  31. 31.
    Pan XQ et al (2002) Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood 100(2):594–602Google Scholar
  32. 32.
    Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160Google Scholar
  33. 33.
    Greco F, Vicent MJ (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv Drug Deliv Rev 61(13):1203–1213Google Scholar
  34. 34.
    Bae Y et al (2004) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem 16(1):122–130Google Scholar
  35. 35.
    Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC (2010) Polymeric nanoparticles for drug delivery. Methods Mol Biol 624:163–175Google Scholar
  36. 36.
    Napier ME, DeSimone JM (2007) Nanoparticle drug delivery platform. Polym Rev 47(3):321–327Google Scholar
  37. 37.
    Matsumura Y, Kataoka K (2009) Preclinical and clinical studies of anticancer agent-incorporating polymer micelles. Cancer Sci 100(4):572–579Google Scholar
  38. 38.
    Sutton D, Nasongkla N, Blanco E, Gao J (2007) Functionalized micellar systems for cancer targeted drug delivery. Pharm Res 24(6):1029–1046Google Scholar
  39. 39.
    Matsumura Y, Phase I (2004) Clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781Google Scholar
  40. 40.
    Hamaguchi T et al (2005) NK105, a paclitaxel-incorporating micellar nanoparticle formulation, can extend in vivo antitumour activity and reduce the neurotoxicity of paclitaxel. Br J Cancer 92(7):1240–1246MathSciNetGoogle Scholar
  41. 41.
    Wilson RHP, Adam R, Eatock J, Boddy MM, Griffin AV, Miller MR, Matsumura Y, Shimizu T, Calvert V (2008) Phase I and pharmacokinetic study of NC-6004, a new platinum entity of cisplatin-conjugated polymer forming micelles. J Clin Oncol (Meeting Abstracts) 26:2573Google Scholar
  42. 42.
    Hamaguchi T et al (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16(20):5058–5066Google Scholar
  43. 43.
    Kim T-Y et al (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10(11):3708–3716Google Scholar
  44. 44.
    Lee KS et al (2006) Multicenter phase II study of a cremophor-free polymeric micelle-formulated paclitaxel in patients with metastatic breast cancer (MBC). J Clin Oncol (Meeting Abstracts) 24(18_suppl):10520Google Scholar
  45. 45.
    Alexis F et al (2008) HER-2-targeted nanoparticle-affibody bioconjugates for cancer therapy. ChemMedChem 3(12):1839–1843Google Scholar
  46. 46.
    Farokhzad OC et al (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA 103(16):6315–6320Google Scholar
  47. 47.
    Gao W, Chan JM, Farokhzad OC (2010) pH-responsive nanoparticles for drug delivery. Mol Pharm 7(6):1913–1920Google Scholar
  48. 48.
    Zhang L et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem 2(9):1268–1271Google Scholar
  49. 49.
    Farokhzad OC et al (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64(21):7668–7672Google Scholar
  50. 50.
    Gu F et al (2008) Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA 105(7):2586–2591Google Scholar
  51. 51.
    Service RF (2010) Nanoparticle Trojan horses gallop from the lab into the clinic. Science 330:314–315Google Scholar
  52. 52.
    Chan JM et al (2009) PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials 30(8):1627–1634Google Scholar
  53. 53.
    Salvador-Morales C, Zhang L, Langer R, Farokhzad OC (2009) Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials 30(12):2231–2240Google Scholar
  54. 54.
    Valencia PM et al (2010) Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano 4(3):1671–1679Google Scholar
  55. 55.
    Wang AZ et al (2010) ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine 5(3):361–368Google Scholar
  56. 56.
    Zhang L et al (2008) Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2(8):1696–1702Google Scholar
  57. 57.
    Sengupta S et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568–572Google Scholar
  58. 58.
    Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka LA (2010) Drug delivery using multifunctional dendrimers and hyperbranched polymers. Expert Opin Drug Deliv 7(12):1387–1398Google Scholar
  59. 59.
    Lee CC, MacKay JA, Frechet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotech 23(12):1517–1526Google Scholar
  60. 60.
    Liu M, Kono K, Frechet JMJ (2000) Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Rel 65(1–2):121–131Google Scholar
  61. 61.
    Xu Q, Wang CH, Pack DW (2010) Polymeric carriers for gene delivery: chitosan and poly(amidoamine) dendrimers. Curr Pharm Des 16(21):2350–2368Google Scholar
  62. 62.
    Gillies ER, Jonsson TB, Frechet JMJ (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126(38):11936–11943Google Scholar
  63. 63.
    McCarthy TD et al (2005) Dendrimers as drugs: discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol Pharm 2(4):312–318MathSciNetGoogle Scholar
  64. 64.
    Padilla De Jesus OL, Ihre HR, Gagne L, Frechet JMJ, Szoka FC Jr (2002) Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug Chem 13(3):453–461Google Scholar
  65. 65.
    Patri AK, Kukowska-Latallo JF, Baker JR (2005) Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv Drug Deliv Rev 57(15):2203–2214Google Scholar
  66. 66.
    Yellepeddi VK, Kumar A, Palakurthi S (2009) Surface modified poly(amido)amine dendrimers as diverse nanomolecules for biomedical applications. Expert Opin Drug Deliv 6(8):835–850Google Scholar
  67. 67.
    Kukowska-Latallo JF et al (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324Google Scholar
  68. 68.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515Google Scholar
  69. 69.
    Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102Google Scholar
  70. 70.
    Eisenstein M (2006) Protein arrays: growing pains. Nature 444:959–962Google Scholar
  71. 71.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17(18):5605–5620Google Scholar
  72. 72.
    Nagayama S, Ogawara K-I, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342(1–2):215–221Google Scholar
  73. 73.
    Fang C et al (2006) In vivo tumor targeting of tumor necrosis factor-[alpha]-loaded stealth nanoparticles: effect of mPEG molecular weight and particle size. Eur J Pharm Sci 27(1):27–36Google Scholar
  74. 74.
    Yuan F et al (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55(17):3752–3756Google Scholar
  75. 75.
    Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60(16):4440–4445Google Scholar
  76. 76.
    Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 46(3):255–263Google Scholar
  77. 77.
    Schwendener RA, Lagocki PA, Rahman YE (1984) The effects of charge and size on the interaction of unilamellar liposomes with macrophages. Biochim Biophys Acta (BBA) - Biomembranes 772(1):93–101Google Scholar
  78. 78.
    Davis ME (2009) The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm 6(3):659–668Google Scholar
  79. 79.
    Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed 49(36):6288–6308Google Scholar
  80. 80.
    Vonarbourg A, Passirani C, Saulnier P, Benoit J-P (2006) Parameters influencing the stealthiness of colloidal drug delivery systems. Biomaterials 27(24):4356–4373Google Scholar
  81. 81.
    Gref R et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313Google Scholar
  82. 82.
    Moghimi SM, Porter CJH, Illum L, Davis SS (1991) The effect of Poloxamer-407 on liposome stability and targeting to bone marrow: comparison with polystyrene microspheres. Int J Pharm 68(1–3):121–126Google Scholar
  83. 83.
    Takae S et al (2005) Ligand density effect on biorecognition by PEGylated gold nanoparticles: regulated interaction of RCA120 lectin with lactose installed to the distal end of tethered PEG strands on gold surface. Biomacromolecules 6(2):818–824Google Scholar
  84. 84.
    Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nat Rev Cancer 2(10):750–763Google Scholar
  85. 85.
    Torchilin VP (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5:1003–1025Google Scholar
  86. 86.
    Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Invest 19(4):424–436Google Scholar
  87. 87.
    Nellis DF et al (2005) Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate. 1. Gram-scale production and purification. Biotechnol Prog 21(1):205–220Google Scholar
  88. 88.
    Nobs L, Buchegger F, Gurny R, Allemann E (2004) Poly(lactic acid) nanoparticles labeled with biologically active neutravidin for active targeting. Eur J Pharm Biopharm 58(3):483–490Google Scholar
  89. 89.
    Patri AK et al (2004) Synthesis and in vitro testing of J591 antibody-dendrimer conjugates for targeted prostate cancer therapy. Bioconjug Chem 15(6):1174–1181Google Scholar
  90. 90.
    Brennan FR, Shaw L, Wing MG, Robinson C (2004) Preclinical safety testing of biotechnology-derived pharmaceuticals: understanding the issues and addressing the challenges. Mol Biotechnol 27(1):59–74Google Scholar
  91. 91.
    Weinberg WC et al (2005) Development and regulation of monoclonal antibody products: challenges and opportunities. Cancer Metastasis Rev 24(4):569–584Google Scholar
  92. 92.
    Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1(2):118–129Google Scholar
  93. 93.
    Pavlinkova G et al (2001) Effects of humanization and gene shuffling on immunogenicity and antigen binding of anti-TAG-72 single-chain Fvs. Int J Cancer 94(5):717–726Google Scholar
  94. 94.
    Mebiopharm Co., Ltd (2009) Safety study of MBP-426 (liposomal oxaliplatin suspension for injection) to treat advanced or metastatic solid tumors. Accessed on May 8, 2011
  95. 95.
    SynerGene Therapeutics, Inc. (2010) Safety study of infusion of SGT-53 to treat solid tumors. Accessed on May 8, 2011
  96. 96.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822Google Scholar
  97. 97.
    Fang X, Tan W (2010) Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res 43(1):48–57Google Scholar
  98. 98.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510Google Scholar
  99. 99.
    Farokhzad OC, Karp JM, Langer R (2006) Nanoparticle-aptamer bioconjugates for cancer targeting. Expert Opin Drug Deliv 3(3):311–324Google Scholar
  100. 100.
    Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, Langer R, Farokhzad OC (2008) Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol 26(8):442–449Google Scholar
  101. 101.
    Nimjee SM, Rusconi CP, Sullenger BA (2005) Aptamers: an emerging class of therapeutics. Annu Rev Med 56:555–583Google Scholar
  102. 102.
    Potti A, Rusconi CP, Sullenger BA, Ortel TL (2004) Regulatable aptamers in medicine: focus on antithrombotic strategies. Expert Opin Biol Ther 4(10):1641–1647Google Scholar
  103. 103.
    Shangguan D et al (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843Google Scholar
  104. 104.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA 100(26):15416–15421Google Scholar
  105. 105.
    Ng EW et al (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132Google Scholar
  106. 106.
    Bagalkot V et al (2007) Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett 7(10):3065–3070Google Scholar
  107. 107.
    Kim D, Jeong YY, Jon S (2010) A drug-loaded aptamer—gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 4(7):3689–3696Google Scholar
  108. 108.
    Kolishetti N et al (2010) Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA 107(42):17939–17944Google Scholar
  109. 109.
    Cheng JJ et al (2007) Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials 28(5):869–876Google Scholar
  110. 110.
    Chiu T-C, Huang C-C (2009) Aptamer-functionalized nano-biosensors. Sensors 9(12):10356–10388Google Scholar
  111. 111.
    Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Medintz IL (2009) Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opin Drug Deliv 6(10):1091–1112Google Scholar
  112. 112.
    Huang Y-F, Sefah K, Bamrungsap S, Chang H-T, Tan W (2008) Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 24(20):11860–11865Google Scholar
  113. 113.
    Lam KS et al (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84Google Scholar
  114. 114.
    Needels MC et al (1993) Generation and screening of an oligonucleotide-encoded synthetic peptide library. Proc Natl Acad Sci USA 90(22):10700–10704Google Scholar
  115. 115.
    McGuire MJ, Li S, Brown KC (2009) Biopanning of phage displayed peptide libraries for the isolation of cell-specific ligands. Methods Mol Biol 504:291–321Google Scholar
  116. 116.
    Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380:364–366Google Scholar
  117. 117.
    Arap W et al (2002) Steps toward mapping the human vasculature by phage display. Nat Med 8(2):121–127Google Scholar
  118. 118.
    Lam KS, Zhao ZG (1997) Targeted therapy for lymphoma with peptides. Hematol Oncol Clin North Am 11(5):1007–1019Google Scholar
  119. 119.
    Lee TY, Lin CT, Kuo SY, Chang DK, Wu HC (2007) Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 67(22):10958–10965Google Scholar
  120. 120.
    Chang DK, Lin CT, Wu CH, Wu HC (2009) A novel peptide enhances therapeutic efficacy of liposomal anti-cancer drugs in mice models of human lung cancer. PLoS ONE 4(1):e4171Google Scholar
  121. 121.
    Li J et al (2004) Fusion protein from RGD peptide and Fc fragment of mouse immunoglobulin G inhibits angiogenesis in tumor. Cancer Gene Ther 11(5):363–370Google Scholar
  122. 122.
    Ruoslahti E, Pierschbacher M (1987) New perspectives in cell adhesion: RGD and integrins. Science 238:491–497Google Scholar
  123. 123.
    Danhier F et al (2009) Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 140(2):166–173Google Scholar
  124. 124.
    Ohannesian DW et al (1995) Carcinoembryonic antigen and other glycoconjugates act as ligands for galectin-3 in human colon carcinoma cells. Cancer Res 55(10):2191–2199Google Scholar
  125. 125.
    Zubieta MR et al (2006) Galectin-3 expression correlates with apoptosis of tumor-associated lymphocytes in human melanoma biopsies. Am J Pathol 168(5):1666–1675Google Scholar
  126. 126.
    David A, Kopeckova P, Kopecek J, Rubinstein A (2002) The role of galactose, lactose, and galactose valency in the biorecognition of N-(2-hydroxypropyl)methacrylamide copolymers by human colon adenocarcinoma cells. Pharm Res 19(8):1114–1122Google Scholar
  127. 127.
    Managit C, Kawakami S, Nishikawa M, Yamashita F, Hashida M (2003) Targeted and sustained drug delivery using PEGylated galactosylated liposomes. Int J Pharm 266(1–2):77–84Google Scholar
  128. 128.
    Ross JF, Chaudhuri PK, Ratnam M (1994) Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 73(9):2432–2443Google Scholar
  129. 129.
    Stella B et al (2000) Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci 89(11):1452–1464Google Scholar
  130. 130.
    Park EK, Lee SB, Lee YM (2005) Preparation and characterization of methoxy poly(ethylene glycol)/poly([ epsilon]-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. Biomaterials 26(9):1053–1061Google Scholar
  131. 131.
    Liu Y, Li K, Pan J, Liu B, Feng S-S (2010) Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials 31(2):330–338Google Scholar
  132. 132.
    Ni S, Stephenson SM, Lee RJ (2002) Folate receptor targeted delivery of liposomal daunorubicin into tumor cells. Anticancer Res 22(4):2131–2135Google Scholar
  133. 133.
    Pan XQ, Wang H, Lee RJ (2003) Antitumor activity of folate receptor-targeted liposomal doxorubicin in a KB oral carcinoma murine xenograft model. Pharm Res 20(3):417–422Google Scholar
  134. 134.
    Stephenson SM et al (2003) Folate receptor-targeted liposomes as possible delivery vehicles for boron neutron capture therapy. Anticancer Res 23(4):3341–3345Google Scholar
  135. 135.
    Low PS, Henne WA, Doorneweerd DD (2007) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129Google Scholar
  136. 136.
    Zhao X, Li H, Lee RJ (2008) Targeted drug delivery via folate receptors. Expert Opin Drug Deliv 5(3):309–319Google Scholar
  137. 137.
    Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L (2005) Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 23(11):1418–1423Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Archana Swami
    • 1
  • Jinjun Shi
    • 1
  • Suresh Gadde
    • 1
  • Alexander R. Votruba
    • 1
  • Nagesh Kolishetti
    • 1
  • Omid C. Farokhzad
    • 1
  1. 1.Department of Anesthesiology, Laboratory of Nanomedicine and BiomaterialsBrigham and Women’s Hospital, and Harvard Medical SchoolBostonUSA

Personalised recommendations