Multivalent Dendritic Architectures for Theranostics

  • Stephanie Reichert
  • Marcelo Calderón
  • Kai Licha
  • Rainer HaagEmail author
Part of the Nanostructure Science and Technology book series (NST)


For the past few years, molecular imaging and targeted drug delivery have been playing an important role toward personalized medicine. In designing and fabricating of multifunctional nanoparticles, the combination of imaging and therapeutic capabilities has also increasingly become important. As a result, a relatively new class of chemical compounds comprising dendritic polymers has been developed. This chapter highlights the potential of dendritic polymers in the growing field of theranostics. A controlled architecture with a high density of functional groups at the nanoscale size makes dendrimers optimal candidates for therapeutic approaches as well as in diagnosis. General aspects of chemistry and properties of dendritic polymers are described in the first section. Then, the biological scenario faced by dendritic polymers in biomedical application is discussed. An overview of selected therapeutic as well as diagnostic applications leads to the description of examples of recently developed theranostics.


Single Photon Emission Compute Tomography Hyperbranched Polymer PAMAM Dendrimer Blood Compatibility Dendritic Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chabner BA, Roberts TG (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72Google Scholar
  2. 2.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed 45:1198–1215Google Scholar
  3. 3.
    Mammen M, Chio SK, Whitesides GM (1998) Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37:2755–2794; Angew Chem 110:2908–2963Google Scholar
  4. 4.
    Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 7:1225–1236Google Scholar
  5. 5.
    Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochim Pol 48:199–208Google Scholar
  6. 6.
    Ong W, Gomez-Kaifer M (2004) Dendrimers as guests in molecular recognition phenomena. Chem Commun 15:1677–1683Google Scholar
  7. 7.
    Kaifer AE (2007) Electron transfer and molecular recognition in metallocene-containing dendrimers. Eur J Inorg Chem 32:5015–5027Google Scholar
  8. 8.
    Van Heerbeek R, Kamer PCJ, Van Leeuwen PWNM, Reek JNH (2002) Dendrimers as support for recoverable catalysts and reagents. Chem Rev 102:3717–3756Google Scholar
  9. 9.
    Andres R, De Jesus E, Flores JC (2007) Catalysts based on palladium dendrimers. New J Chem 31:1161–1191Google Scholar
  10. 10.
    Flomenboma O, Amir RJ, Shabat D, Klafter J (2005) Some new aspects of dendrimer applications. J Lumin 111:315–325Google Scholar
  11. 11.
    Aulenta F, Hayes W, Rannard S (2003) Dendrimers: a new class of nanoscopic containers and delivery devices. Eur Polym J 39:1741–1771Google Scholar
  12. 12.
    Boas U, Heegaard PMH (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63Google Scholar
  13. 13.
    Hawker CJ, Fréchet JMJ (1991) One-step synthesis of hyperbranched dendritic polyesters. J Am Chem Soc 113:4583–4588Google Scholar
  14. 14.
    Vögtle F, Richardt G, Werner N (2007) Dendritische Moleküle: Konzepte, Synthesen, Eigenschaften, Anwendungen. Teubner, Wiesbaden, Germany, pp 17–28Google Scholar
  15. 15.
    Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132Google Scholar
  16. 16.
    Newkome GR, Zhong-qi Y, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004Google Scholar
  17. 17.
    Hawker CJ, Fréchet JMJ (1990) A new convergent approach to monodisperse dendritic macromolecules. J Chem Soc Chem Commun 15:1010–1013Google Scholar
  18. 18.
    Hawker CJ, Fréchet JMJ (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647Google Scholar
  19. 19.
    Adronov A, Fréchet JMJ (2002) Light-harvesting dendrimers. Chem Commun 1701–1710Google Scholar
  20. 20.
    Stiriba SE, Frey H, Haag R (2002) Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy. Angew Chem Int Ed 41:1329–1334Google Scholar
  21. 21.
    Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275Google Scholar
  22. 22.
    Sunder A, Mülhaupt R, Haag R, Frey H (2000) Hyperbranched polyether polyols: a modular approach to new materials with complex polymer architectures. Adv Mater 12:235–239Google Scholar
  23. 23.
    Sunder A, Hanselmann R, Frey H, Mülhaupt R (1999) Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules 32:4240–4246Google Scholar
  24. 24.
    Lee CC, MacKay JA, Fréchet JMJ, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517–1526Google Scholar
  25. 25.
    Kolhe P, Khandare J, Pillai O, Kannan S, Lieh-Lai M, Kannan RM (2006) Preparation, cellular transport, and activity of polyamidoamine-based dendritic nanodevices with a high drug payload. Biomaterials 27:660–669Google Scholar
  26. 26.
    Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185Google Scholar
  27. 27.
    Gillies ER, Fréchet JMJ (2002) Designing macromolecules for therapeutic applications: polyester dendrimer poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. J Am Chem Soc 124:14137–14146Google Scholar
  28. 28.
    Gillies ER, Fréchet JMJ, Szoka FC (2005) Biological evaluation of polyester dendrimer—poly(ethylene oxide) “bow-tie” hybrids with tunable molecular weight and architecture. Mol Pharm 2:129–138Google Scholar
  29. 29.
    Minko T, Dharap SS, Pakunlu RI, Wang Y (2004) Molecular targeting of drug delivery systems to cancer. Curr Drug Targets 5:389–406Google Scholar
  30. 30.
    Luo Y, Prestwich GD (2002) Cancer-targeted polymeric drugs. Curr Cancer Drug Targets 2:209–226Google Scholar
  31. 31.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res 46:6387–6392Google Scholar
  32. 32.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284Google Scholar
  33. 33.
    Jain RK (1987) Transport of molecules across tumor vasculature. Cancer Metathesis Rev 6:559–593Google Scholar
  34. 34.
    Jain RK (1987) Transport of molecules in the tumor interstitium: a review. Cancer Res 47:3039–3051Google Scholar
  35. 35.
    Fox ME, Szoka FC, Fréchet JMJ (2009) Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res 42:1141–1151Google Scholar
  36. 36.
    Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Anwendung von Poly(ethylenglycol) beim Wirkstoff-Transport: Vorteile, Nachteile und Alternativen. Angew Chem 122:6430–6452Google Scholar
  37. 37.
    Yazawa K, Fujimori M, Amano J, Kano Y, Taniguchi S (2000) Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther 2:269–274Google Scholar
  38. 38.
    Stroh M, Zimmer JP, Duda DG, Levchenko TS, Cohen KS, Brown EB, Scadden DT, Torchilin VP, Bawendi MG, Fukumura D, Jain RK (2005) Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nat Med 6:678–682Google Scholar
  39. 39.
    Noguchi Y, Wu J, Duncan R, Strohalm J, Ulbrich K, Akaike T, Maeda H (1998) Early phase tumor accumulation of macromolecules: a great difference in clearance rate between tumor and normal tissues. Jpn J Cancer Res 89:307–314Google Scholar
  40. 40.
    Minko T, Khandare J, Jayant S (2007) In Matyjaszewski K, Gnanou Y, Leibler L (eds) Macromolecular engineering: from precise macromolecular synthesis to macroscopic material properties and application. Wiley-VCH Verlag GmbH & Co.KGaA, WeinheimGoogle Scholar
  41. 41.
    Jayant S, Khandare J, Wang Y, Singh AP, Vorsa N, Minko T (2007) Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment: Polymeric Drugs 24:2541–2595Google Scholar
  42. 42.
    Okuda T, Kawakami S, Akimoto N, Niidome T, Yamashita F, Hashida M (2006) PEGylated lysine dendrimers for tumor-selective targeting after intravenous injection in tumor-bearing mice. J Control Release 116:330–336Google Scholar
  43. 43.
    Kitchens KM, Kolhatkar RB, Swaan PW, Ghandehari H (2008) Endocytosis inhibitors prevent poly(amidoamine) dendrimer internalization and permeability across CaCo2 cells. Mol Pharm 5:364–369Google Scholar
  44. 44.
    Najlah M, D’Emanuele A (2006) Crossing cellular barriers using dendrimer nanotechnologies. Curr Opin Pharmacol 6:522–527Google Scholar
  45. 45.
    Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44Google Scholar
  46. 46.
    Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612Google Scholar
  47. 47.
    Lopes L, Godoy LMF, de Oliveira CC, Gabardo J, Schadeck RJG, de Freitas Buchi D (2006) Phagocytosis, endosomal/lysosomal system and other cellular aspects of macrophage activation by canova medication. Micron 37:277–287Google Scholar
  48. 48.
    Schmid EM, McMahon HAT (2007) Integrating molecular and network biology to decode endocytosis. Nature 448:883–888Google Scholar
  49. 49.
    Benmerah A, Lamaze C (2007) Clathrin-coated pits: vive la différence? Traffic 8:970–982Google Scholar
  50. 50.
    Ungewickell EJ, Hinrichsen L (2007) Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 19:417–425Google Scholar
  51. 51.
    Nabi IR, Phuong ULJ (2003) Caveolae/raft-dependent endocytosis. Cell Biol 161:673–677Google Scholar
  52. 52.
    Gold S, Monaghan P, Mertens P, Jackson T (2010) A clathrin independent macropinocytosis-like entry mechanism used by bluetongue virus-1 during infection of BHK cells. PLoS One 5(6):e11360Google Scholar
  53. 53.
    Wiwattanapatapee R, Carreno-Gomez B, Malik N, Duncan R (2000) Anionic PAMAM dendrimers rapidly cross adult rat intestine in vitro: a potential oral delivery system? Pharm Res 17:991–998Google Scholar
  54. 54.
    Jevprasesphant R, Penny J, Attwood D, D’Emanuele A (2004) Transport of dendrimer nanocarriers through epithelial cells via the transcellular route. J Control Release 97:259–267Google Scholar
  55. 55.
    Mosbah IB, Franco-Go R, Abdennebi HB, Hernandez R, Escolar G, Saidane D, Rosello-Catafau J, Peralta C (2006) Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation solution on human red blood cell aggregation and ­viscosity. Transplant Proc 38:1229–1235Google Scholar
  56. 56.
    Kainthan RK, Gnanamani M, Ganguli M, Ghosh T, Brooks DE, Maiti S, Kizhakkedathu JN (2006) Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA. Biomaterials 27:5377–5390Google Scholar
  57. 57.
    Fernandes EGR, De Queiroz AAA, Abraham GA, San Roma J (2006) Antithrombogenic properties of bioconjugate streptokinase-polyglycerol dendrimers. J Mater Sci Mater Med 17:105–111Google Scholar
  58. 58.
    Schatzlein AG, Zinselmeyer BH, Elouzi A, Dufes C, Chim YTA, Roberts CJ, Davies MC, Munro A, Gray AI, Uchegbu IF (2005) Preferential liver gene expression with polypropylenimine dendrimers. J Control Release 101:247–258Google Scholar
  59. 59.
    Singh P (1996) StarburstTM dendrimers: a novel matrix for multifunctional reagents in immunoassays. Clin Chem 42:1567–1569Google Scholar
  60. 60.
    Kojima C, Tsumura S, Harada A, Kono K (2009) A collagen-mimic dendrimer capable of controlled release. J Am Chem Soc 131:6052–6053Google Scholar
  61. 61.
    Myc A, Majoros IJ, Thomas TP, Baker JR Jr (2007) Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells. Biomacromolecules 8:13–18Google Scholar
  62. 62.
    Calderón M, Quadir MA, Strumia M, Haag R (2010) Functional dendritic polymer architectures as stimuli-responsive nanocarriers. Biochimie 92:1242–1251Google Scholar
  63. 63.
    Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed 29:138–175Google Scholar
  64. 64.
    Gajbhiye V, Palanirajan VK, Tekade RK, Jain NK (2009) Dendrimers as therapeutic agents: a systematic review. J Pharm Pharmacol 61:989–1003Google Scholar
  65. 65.
    Maciejewski M (1982) Concepts of trapping topologically by shell molecules. J Macromol Sci Chem A17:689–703Google Scholar
  66. 66.
    D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57:2147–2162Google Scholar
  67. 67.
    Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57:2106–2129Google Scholar
  68. 68.
    Quadir MA, Calderón M, Haag R (2011) Drug Delivery in Oncology: From Basic Research to Cancer Therapy. Dendritic Polymers in Oncology: Facts, Features, and Applications, Weinheim 513–551Google Scholar
  69. 69.
    Jansen JF, De Brabander-Van Den Berg EMM, Meijer EW (1994) Encapsulation of guest molecules into a dendritic box. Science 266:1226–1229Google Scholar
  70. 70.
    Haensler J, Szoka FC Jr (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug Chem 4:372–379Google Scholar
  71. 71.
    Newkome GR, Moorefield CN, Baker GR, Saunders MJ, Grossman SH (1991) Unimolecular micelles. Angew Chem Int Ed 30:1178–1180Google Scholar
  72. 72.
    Xu S, Luo Y, Gräser R, Warnecke A, Kratz F, Hauff P, Licha K, Haag R (2009) Development of pH-responsive core-shell nanocarriers for delivery of therapeutic and diagnostic Agents. Bioorg Med Chem Lett 19:1030–1034Google Scholar
  73. 73.
    Xu S, Luo Y, Haag R (2007) Water-soluble pH-responsive dendritic core-shell nanocarriers for polar dyes based on poly(ethylene imine). Macromol Biosci 7:968–974Google Scholar
  74. 74.
    Xu S, Krämer M, Haag R (2006) pH-responsive dendritic core-shell architectures as amphiphilic nanocarriers for polar drugs. J Drug Target 14:367–374Google Scholar
  75. 75.
    Krämer M, Stumbé JF, Türk H, Krause S, Komp A, Delineau L, Prokhorova S, Kautz H, Haag R (2002) pH-responsive molecular nanocarriers based on dendritic core-shell architectures. Angew Chem Int Ed 41:4252–4256Google Scholar
  76. 76.
    Radowski MR, Shukla A, v. Berlepsch H, Böttcher C, Pickaert G, Rehage H, Haag R (2007) Supramolecular aggregates of dendritic multishell architectures as universal nanocarriers. Angew Chem Int Ed 46:1265–1292Google Scholar
  77. 77.
    Fischer W, Calderón M, Schulz A, Andreou I, Weber M, Haag R (2010) Dendritic polyglycerols with oligoamine shells show low toxicity and high transfection efficiency in vitro. Bioconj Chem 21:1744–1752Google Scholar
  78. 78.
    Ofek P, Fischer W, Calderón M, Haag R, Satchi-Fainaro R (2010) In vivo delivery of siRNA to tumors and their vasculature by novel dendritic nanocarriers. FASEB J 24: 3122–3134Google Scholar
  79. 79.
    Malik N, Evagorou EG, Duncan R (1999) Dendrimer-platinate: a novel approach to cancer chemotherapy. Anticancer Drugs 10:767–776Google Scholar
  80. 80.
    Duncan R, Malik N (1996) Dendrimers: biocompatibility and potential for delivery of anticancer agents. Proc Int Symp Control Release Bioact Mater 23:105–106Google Scholar
  81. 81.
    Gillies ER, Fréchet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43Google Scholar
  82. 82.
    Kratz F, Müller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20–53Google Scholar
  83. 83.
    Calderón M, Welker P, Licha K, Fichtner I, Graeser R, Haag R, Kratz F (2011) Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Release 151(3):295–301Google Scholar
  84. 84.
    Türk H, Haag R, Alban S (2004) Dendritic polyglycerol sulfates as new heparin analogues and potent inhibitors of the complement system. Bioconjug Chem 15:162–167Google Scholar
  85. 85.
    Dernedde J, Rausch A, Weinhart M, Enders S, Tauber R, Licha K, Schirner M, Zügel U, von Bonin A, Haag R (2010) Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proc Natl Acad Sci USA 107:19679–19684Google Scholar
  86. 86.
    Hamoudeh M, Kamleh MA, Diab R, Fessi H (2008) Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv 60:1329–1346Google Scholar
  87. 87.
    Zhou M, Ghosh I (2007) Quantum dots and peptides: a bright future together. Biopolymers 8:325–339Google Scholar
  88. 88.
    Wei A, Leonov AP, Wei Q (2010) Gold nanorods: multifunctional agents for cancer imaging and therapy. Methods Mol Biol 624:119–130Google Scholar
  89. 89.
    Shen M, Shi X (2010) Dendrimer-based organic/inorganic hybrid nanoparticles in biomedical applications. Nanoscale 2:1596–1610Google Scholar
  90. 90.
    Licha K, Schirner M (2008) Emerging optical imaging technologies: contrast agents. In: Azar FS, Intes X (eds) Translational multimodality optical imaging. Artech House, Boston, pp 327–337Google Scholar
  91. 91.
    Swanson SD, Kukowska-Latallo JF, Patri AK, Chen C, Ge S, Cao Z, Kotlyar A, East AT, Baker JR (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 3:201–210Google Scholar
  92. 92.
    Thomas TP, Majoros IJ, Kotlyar A, Kukowska-Latallo JF, Bielinksa A (2005) Targeting and inhibition of cell growth by an engineered dendritic synthetic nanoscale bioconjugate. J Med Chem 48:3729–3735Google Scholar
  93. 93.
    Zhang Y, Sun Y, Xu X, Zhang X, Zhu H, Huang L, Qi Y, Shen YM (2010) Synthesis, biodistribution, and microsingle photon emission computed tomography (SPECT) imaging study of technetium-99m labeled PEGylated dendrimer poly(amidoamine) (PAMAM)-folic acid conjugates. J Med Chem 53:3262–3272Google Scholar
  94. 94.
    Dijkgraaf I, Rijnders AY, Soede A, Dechesne AC, van Esse GW, Brouwer AJ, Corstens FH, Boerman OC, Rijkers DT, Liskamp RM (2007) Synthesis of DOTA-conjugated multivalent cyclic-RGD peptide dendrimers via 1,3-dipolar cycloaddition and their biological evaluation: implications for tumor targeting and tumor imaging purposes. Org Biomol Chem 21:935–944Google Scholar
  95. 95.
    Almutairi A, Rossin R, Shokeen M, Hagooly A, Ananth A, Capoccia B, Guillaudeu S, Abendschein D, Anderson DJ, Welch MJ, Fréchet JMJ (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106:685–690Google Scholar
  96. 96.
    Liu S (2006) Radiolabeled multimeric cyclic RGD peptides as integrin alpha-v-beta-3 targeted radiotracers for tumor imaging. Mol Pharm 3:472–487Google Scholar
  97. 97.
    Ye Y, Bloch S, Xu B, Achilefu S (2006) Design, synthesis, and evaluation of near infrared luorescent multimeric RGD peptides for targeting tumors. J Med Chem 49:2268–2275Google Scholar
  98. 98.
    Yim CB, Dijkgraaf I, Merkx R, Versluis C, Eek A, Mulder GE, Rijkers DT, Boerman OC, Liskamp RS (2010) Synthesis of DOTA-conjugated multimeric [Tyr3]octreotide peptides via a combination of Cu(I)-catalyzed “click” cycloaddition and thio acid/sulfonyl azide “sulfo-click” amidation and their in vivo evaluation. J Med Chem 53:3944–3953Google Scholar
  99. 99.
    Ye Y, Bloch S, Kao J, Achilefu S (2005) Multivalent carbocyanine molecular probes: synthesis and applications. Bioconjug Chem 16:51–61Google Scholar
  100. 100.
    Kobayashi H, Sato N, Saga T, Nakamoto Y, Ishimori T, Toyama S, Togashi K, Konishi J, Brechbiel MW (2000) Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur J Nucl Med 27:1334–1339Google Scholar
  101. 101.
    Sato N, Kobayashi H, Saga T, Nakamoto Y, Ishimori T, Togashi K, Fujibayashi Y, Konishi J, Brechbiel MW (2001) Tumor targeting and imaging of intraperitoneal tumors by use of antisense oligo-DNA complexed with dendrimers and/or avidin in mice. Clin Cancer Res 7:3606–3612Google Scholar
  102. 102.
    Thomas TP, Shukla R, Kotlyar A, Liang B, Ye JY, Norris TB, Baker JR Jr (2008) Dendrimer-epidermal growth factor conjugate displays superagonist activity. Biomacromolecules 9:603–609Google Scholar
  103. 103.
    Zhao Y, Liu S, Li Y, Jiang W, Chang Y, Pan S, Fang X, Wang YA, Wang J (2010) Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. J Colloid Interface Sci 350:44–50Google Scholar
  104. 104.
    Priyam A, Blumling DE, Knappenberger KL Jr (2010) Synthesis, characterization, and self-organization of dendrimer-encapsulated HgTe quantum dots. Langmuir 26:10636–10644Google Scholar
  105. 105.
    Dernedde J, Enders S, Reissig HU, Roskamp M, Schlecht S, Yekta S (2009) Inhibition of selectin binding by colloidal gold with functionalized shells. Chem Commun 28:932–934Google Scholar
  106. 106.
    Li Z, Huang P, Zhang X, Lin J, Yang S, Liu B, Gao F, Xi P, Ren Q, Cui D (2010) RGD-conjugated dendrimer-modified gold nanorods for in vivo tumor targeting and photothermal therapy. Mol Pharm 7:94–104Google Scholar
  107. 107.
    Shi X, Wang SH, Lee I, Shen M, Baker JR Jr (2009) Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells. Biopolymers 91:936–942Google Scholar
  108. 108.
    Yu MK, Park J, Jeong YY, Moon WK, Jon S (2010) Integrin-targeting thermally cross-linked superparamagnetic iron oxide nanoparticles for combined cancer imaging and drug delivery. Nanotechnology 21:415102Google Scholar
  109. 109.
    Lee CM, Jeong HJ, Cheong SJ, Kim EM, Kim DW, Lim ST, Sohn MH (2010) Prostate cancer-targeted imaging using magnetofluorescent polymeric nanoparticles functionalized with bombesin. Pharm Res 27:712–721Google Scholar
  110. 110.
    Quadir MA, Radowski MR, Kratz F, Licha K, Hauff P, Haag R (2010) Dendritic multishell architectures for drug and dye transport. J Control Release 132:289–294Google Scholar
  111. 111.
    Nakamura E, Makino K, Okano T, Yamamoto T, Yokoyama M (2006) A polymeric micelle MRI contrast agent with changeable relaxivity. J Control Release 114:325–333Google Scholar
  112. 112.
    Criscione JM, Le BL, Stern E, Brennan M, Rahner C, Papademetris X, Fahmy TM (2009) Self-assembly of pH-responsive fluorinated dendrimer-based particulates for drug delivery and noninvasive imaging. Biomaterials 23–24:3946–3955Google Scholar
  113. 113.
    Gillies ER, Jonsson TB, Fréchet JMJ (2004) Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J Am Chem Soc 126:11936–11943Google Scholar
  114. 114.
    Gilham I (2002) Theranostics: an emerging tool in drug discovery and commercialisation. Drug Discov World Fall 1:17–23Google Scholar
  115. 115.
    Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine: challenge and oppurtunities. Angew Chem Int Ed 48:872–897Google Scholar
  116. 116.
    Wagner V, Wechsler D (2004) Technologiefrüherkennung, Nanobiotechnologie II: Anwendungen in der Medizin und Pharmazie, Band 50. Düsseldorf, pp 43–45Google Scholar
  117. 117.
    Oliveira JM, Salgado AJ, Sousa N, Mano JF, Reis RL (2010) Dendrimers and derivatives as a potential therapeutic tool in regenerative medicine strategies—a review. Science 35:1163–1194Google Scholar
  118. 118.
    Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BTS, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429Google Scholar
  119. 119.
    Majoros IJ, Myc A, Thomas T, Mehta CB, Baker JR Jr (2006) PAMAM dendrimer-based multifunctional conjugate for cancer therapy: synthesis, characterization, and functionality. Biomacromolecules 7:572–579Google Scholar
  120. 120.
    Zhu S, Hong M, Zhang L, Tang G, Jiang Y, Pei Y (2009) Erratum to: PEGylated PAMAM dendrimer-doxorubicin conjugates: in vitro evaluation and in vivo tumor accumulation. Pharm Res 27:161–174Google Scholar
  121. 121.
    Santra S, Kaittanis C, Perez JM (2010) Cytochrome c encapsulating theranostic nanoparticles: a novel bifunctional system for targeted delivery of therapeutic membrane-impermeable proteins to tumors and imaging of cancer therapy. Mol Pharm 7:1209–1222Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Stephanie Reichert
    • 1
  • Marcelo Calderón
    • 1
  • Kai Licha
    • 2
  • Rainer Haag
    • 1
    Email author
  1. 1.Department of Chemistry and Biochemistry, Organic and Macromolecular ChemistryFreie Universität BerlinBerlinGermany
  2. 2.Mivenion GmbHBerlinGermany

Personalised recommendations