B Lymphocyte-Derived Humoral Immune Defenses in Breast Milk Transmission of the HIV-1

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 743)

Abstract

The UNAIDS estimated that more than 370,000 (230,000–510,000) children were infected by human immunodeficiency virus (HIV) type 1 through mother-to-child transmission (MTCT) worldwide in 2009, with the majority (>90%) occurring in sub-Saharan Africa (a drop of 24% from 5 years earlier) [1]. The majority of MTCT occurs during pregnancy and birth. In addition, postnatal transmission of HIV from HIV-infected mother to her child through prolonged breastfeeding is well recognized, and may account for one-third to half of new infant HIV infections worldwide [2–10]. While studies of maternal or infant antiretroviral prophylaxis during the period of breastfeeding have shown substantial potential for reduction of infant HIV infections [11–14], postnatal virus transmissions may continue to occur even in the setting of optimal antiretroviral prophylaxis. Therefore, development of immunologic strategies to reduce HIV transmission via breast milk remains important to improving survival of infants born to HIV-infected mothers in the developing world.

References

  1. 1.
    UNAIDS (2010) Report on the global AIDS epidemic. http://www.unaids.org/globalreport/Global_report.htm
  2. 2.
    Van De Perre P, Simonon A, Hitimara DG et al (1993) Infective and anti-infective properties of breastmilk from HIV-infected women. Lancet 341:914–918PubMedCrossRefGoogle Scholar
  3. 3.
    Datta P, Embree JE, Kreiss JK et al (1994) Mother-to-child transmission of human immunodeficiency virus type 1: report from the Nairobi Study. J Infect Dis 170:1134–1140PubMedCrossRefGoogle Scholar
  4. 4.
    Bulterys M, Chao A, Dushimimana A, Saah A (1995) HIV-1 seroconversion after 20 months of age in a cohort of breastfed children born to HIV-1-infected women in Rwanda. AIDS 9:93–94PubMedGoogle Scholar
  5. 5.
    Bertolli J, St Louis ME, Simonds RJ et al (1996) Estimating the timing of mother-to-child transmission of human immunodeficiency virus in a breast-feeding population in Kinshasa, Zaire. J Infect Dis 174:722–726PubMedCrossRefGoogle Scholar
  6. 6.
    Bobat R, Moodley D, Coutsoudis A, Coovadia H (1997) Breastfeeding by HIV-1-infected women and outcome in their infants: a cohort study from Durban, South Africa. AIDS 11:1627–1633PubMedCrossRefGoogle Scholar
  7. 7.
    Ekpini ER, Wiktor SZ, Satten GA et al (1997) Late postnatal mother-to-child transmission of HIV-1 in Abidjan, Côte d’Ivoire. Lancet 349:1054–1059PubMedCrossRefGoogle Scholar
  8. 8.
    Miotti PG, Taha TE, Kumwenda NI et al (1999) HIV transmission through breastfeeding: a study in Malawi. J Am Med Assoc 282:744–749CrossRefGoogle Scholar
  9. 9.
    Fowler MG, Newell ML (2002) Breast-feeding and HIV-1 transmission in resource-limited settings. J Acquir Immune Defic Syndr 30:230–239PubMedGoogle Scholar
  10. 10.
    John-Stewart G, Mbori-Ngacha D, Ekpini R et al (2004) Breast-feeding and transmission of HIV-1. J Acquir Immune Defic Syndr 35:196–202PubMedCrossRefGoogle Scholar
  11. 11.
    Thior I, Lockman S, Smeaton LM et al (2006) Breastfeeding plus infant zidovudine prophylaxis for 6 months vs formula feeding plus infant zidovudine for 1 month to reduce mother-to-child HIV transmission in Botswana: a randomized trial: the Mashi Study. JAMA 296:794–805PubMedCrossRefGoogle Scholar
  12. 12.
    Kumwenda NI, Hoover DR, Mofenson LM et al (2008) Extended antiretroviral prophylaxis to reduce breast-milk HIV-1 transmission. N Engl J Med 359:119–129PubMedCrossRefGoogle Scholar
  13. 13.
    Chasela CS, Hudgens MG, Jamieson DJ et al (2010) Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N Engl J Med 362:2271–2281PubMedCrossRefGoogle Scholar
  14. 14.
    Shapiro RL, Hughes MD, Ogwu A et al (2010) Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N Engl J Med 362:2282–2294PubMedCrossRefGoogle Scholar
  15. 15.
    Coovadia HM, Rollins NC, Bland RM et al (2007) Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 369:1107–1116PubMedCrossRefGoogle Scholar
  16. 16.
    Kourtis AP, Butera S, Ibegbu C, Belec L, Duerr A (2003) Breast milk and HIV-1: vector of transmission or vehicle of protection? Lancet Infect Dis 3:786–793PubMedCrossRefGoogle Scholar
  17. 17.
    Fouda GG, Yates NL, Pollara J et al (2011) HIV-specific functional antibody responses in breast milk mirror those in plasma and are primarily mediated by IgG antibodies. J Virol 85:9555–9567PubMedCrossRefGoogle Scholar
  18. 18.
    Wilks AB, Perry JR, Ehlinger EP et al (2011) High cell-free virus load and robust autologous humoral immune responses in breast milk of simian immunodeficiency virus-infected African Green monkeys. J Virol 85:9517–9526PubMedCrossRefGoogle Scholar
  19. 19.
    Hanson LA, Korotkova M, Lundin S et al (2003) The transfer of immunity from mother to child. Ann N Y Acad Sci 987:199–206PubMedCrossRefGoogle Scholar
  20. 20.
    Leroy V, Newell ML, Dabis F et al (1998) International multicentre pooled analysis of late postnatal mother to child transmission of HIV-1 infection. Lancet 352:597–600PubMedCrossRefGoogle Scholar
  21. 21.
    Becquet R, Bland R, Leroy V et al (2009) Duration, pattern of breastfeeding and postnatal transmission of HIV: pooled analysis of individual data from West and South African cohorts. PLoS One 4:e7397PubMedCrossRefGoogle Scholar
  22. 22.
    Gaillard P, Fowler MG, Dabis F et al (2004) Use of antiretroviral drugs to prevent HIV-1 transmission through breast-feeding: from animal studies to randomized clinical trials. J Acquir Immune Defic Syndr 35:178–187PubMedCrossRefGoogle Scholar
  23. 23.
    The Breastfeeding and HIV International Transmission Study Group (2004) Late postnatal transmission of HIV-1 in breast-fed children: an individual patient data meta-analysis. J Infect Dis 189:2154–2166CrossRefGoogle Scholar
  24. 24.
    Iliff PJ, Piwoz EG, Tavengwa NV et al (2005) Early exclusive breastfeeding reduces the risk of postnatal HIV-1 transmission and increases HIVfree survival. AIDS 19:699–708PubMedCrossRefGoogle Scholar
  25. 25.
    Rollins NC, Becquet R, Bland RM, Coutsoudis A, Coovadia HM, Newell ML (2008) Infant feeding, HIV transmission and mortality at 18 months: the need for appropriate choices by mothers and prioritization within programmes. AIDS 22:2349–2357PubMedCrossRefGoogle Scholar
  26. 26.
    Richardson BA, John-Stewart GC, Hughes JP et al (2003) Breast-milk infectivity in human immunodeficiency virus type 1-infected mothers. J Infect Dis 187:736–740PubMedCrossRefGoogle Scholar
  27. 27.
    Willumsen JF, Newell ML, Filteau SM et al (2001) Variation in breastmilk HIV-1 viral load in left and right breasts during the first 3 months of lactation. AIDS 15:1896–1898PubMedCrossRefGoogle Scholar
  28. 28.
    Neveu D, Viljoen J, Bland RM et al (2011) Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis 52:819–825PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis P, Nduati R, Kreiss JK et al (1998) Cell free HIV-1 in breast milk. J Infect Dis 177:34–39PubMedCrossRefGoogle Scholar
  30. 30.
    Van De Perre P (1995) Postnatal transmission of the human immunodeficiency virus type 1 and the breast feeding dilemma. Am J Obstet Gynecol 173:483–487PubMedCrossRefGoogle Scholar
  31. 31.
    Van De Perre P, Cartoux M (1996) Retroviral infection and breast-feeding. J Clin Microbiol Infect 1:6–12CrossRefGoogle Scholar
  32. 32.
    Tranchat C, Van de Perre P, Simonon-Sorel A et al (1999) Maternal humoral factors associated with perinatal HIV-1 transmission in a cohort from Kigali, Rwanda, 1988–94. J Infect 39:213–220PubMedCrossRefGoogle Scholar
  33. 33.
    Van De Perre P (1999) Mother to child transmission of HIV-1: the all mucosal hypothesis as a predominant mechanism of transmission. AIDS 13:1133–1138PubMedCrossRefGoogle Scholar
  34. 34.
    Van De Perre P (1999) Transmission of human immunodeficiency virus type 1 through breast-feeding: how can it be prevented? J Infect Dis 179:S405–S407PubMedCrossRefGoogle Scholar
  35. 35.
    Van De Perre P (2000) Breast milk transmission of HIV-1. Laboratory and clinical studies. Ann N Y Acad Sci 918:122–127PubMedCrossRefGoogle Scholar
  36. 36.
    Page-Shafer K, Sweet S, Kassaye S, Ssali C (2006) Saliva, breast milk, and mucosal fluids in HIV transmission. Adv Dent Res 19:152–157PubMedCrossRefGoogle Scholar
  37. 37.
    Becquart P, Hocini H, Levy M, Sepou A, Kazatchkine MD, Belec L (2000) Secretory anti-human immunodeficiency virus (HIV) antibodies in colostrum and breast milk are not a major determinant of the protection of early postnatal transmission of HIV. J Infect Dis 181:532–539PubMedCrossRefGoogle Scholar
  38. 38.
    Nduati RW, John GC, Richardson BA et al (1995) HIV-1 infected cells in breast milk: association with immunosuppression and vitamin A deficiency. J Infect Dis 172:1461–1468PubMedCrossRefGoogle Scholar
  39. 39.
    Semba RD, Kumwenda N, Taha TE et al (1999) Mastitis and immunological factors in breast milk of human immunodeficiency virus-infected women. J Hum Lact 15:301–306PubMedCrossRefGoogle Scholar
  40. 40.
    Willumsen J, Filteau SM, Coutsoudis A et al (2003) Breastmilk RNA viral load in HIV-1 infected South African women: effects of subclinical mastitis and infant feeding. AIDS 17:407–414PubMedCrossRefGoogle Scholar
  41. 41.
    Becquart P, Foulongne V, Willumsen J, Rouzioux C, Segondy M, Van de Perre P (2006) Quantitation of HIV-1 RNA in breast milk by real time PCR. J Virol Methods 133:109–111PubMedCrossRefGoogle Scholar
  42. 42.
    Becquart P, Chomont N, Roques P et al (2002) Compartmentalization of HIV-1 between breast milk and blood of HIV-infected mothers. Virology 300:109–117PubMedCrossRefGoogle Scholar
  43. 43.
    Rousseau CM, Nduati RW, Richardson BA et al (2004) Association of levels of HIV-1-infected breast milk cells and risk of mother-to-child transmission. J Infect Dis 190:1880–1888PubMedCrossRefGoogle Scholar
  44. 44.
    Koulinska IN, Villamor E, Chaplin B et al (2006) Transmission of cell-free and cell-associated HIV-1 through breast-feeding. J Acquir Immune Defic Syndr 41:93–99PubMedCrossRefGoogle Scholar
  45. 45.
    Petitjean G, Becquart P, Tuaillon E et al (2007) Isolation and characterization of HIV-1-infected resting CD4+ T lymphocytes in breast milk. J Clin Virol 39:1–8PubMedCrossRefGoogle Scholar
  46. 46.
    Lunney KM, Iliff P, Mutasa K et al (2010) Associations between breast milk viral load, mastitis, exclusive breast-feeding, and postnatal transmission of HIV. Clin Infect Dis 50:762–769PubMedGoogle Scholar
  47. 47.
    Valea D, Tuaillon E, Al Tabaa Y et al (2011) CD4+ T cells spontaneously producing human immunodeficiency virus type I in breast milk from women with or without antiretroviral drugs. Retrovirology 8:34PubMedCrossRefGoogle Scholar
  48. 48.
    Becquart P, Petitjean G, Tabaa YA et al (2006) Detection of a large T-cell reservoir able to replicate HIV-1 actively in breast milk. AIDS 20:1453–145PubMedCrossRefGoogle Scholar
  49. 49.
    Pillay K, Coutsoudis A, York D, Kuhn L, Coovadia HM (2000) Cell-free virus in breast milk of HIV-1-seropositive women. J Acquir Immune Defic Syndr 24:330–336PubMedGoogle Scholar
  50. 50.
    Richardson BA, John-Stewart GC, Hughes J et al (2003) Breast milk infectivity in HIV-1-infected mothers. J Infect Dis 187:736–740PubMedCrossRefGoogle Scholar
  51. 51.
    Rousseau CM, Nduati RW, Richardson BA et al (2003) Longitudinal analysis of human immunodeficiency virus type 1 RNA in breast milk and of its relationship to infant infection and maternal disease. J Infect Dis 187:741–747PubMedCrossRefGoogle Scholar
  52. 52.
    Dimitrov DS, Willey RL, Sato H, Chang LJ, Blumenthal R, Martin MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67:2182–90PubMedGoogle Scholar
  53. 53.
    Semba RD, Neville MC (1999) Breast-feeding, mastitis, and HIV transmission: nutritional implications. Nutr Rev 57:146–153PubMedCrossRefGoogle Scholar
  54. 54.
    Embree JE, Njenga S, Datta P et al (2000) Risk factors for postnatal mother-child transmission of HIV-1. AIDS 14:2535–2541PubMedCrossRefGoogle Scholar
  55. 55.
    Fawzi W, Msamanga G, Spiegelman D et al (2002) Transmission of HIV-1 through breastfeeding among women in Dar es Salaam, Tanzania. J Acquir Immune Defic Syndr 31:331–338PubMedCrossRefGoogle Scholar
  56. 56.
    Farquhar C, VanCott T, Bosire R et al (2008) Salivary human immunodeficiency virus (HIV)-1-specific immunoglobulin A in HIV-1-exposed infants in Kenya. Clin Exp Immunol 153:37–43PubMedCrossRefGoogle Scholar
  57. 57.
    Ogra SS, Weintraub D, Ogra PL (1977) Immunologic aspects of human colostrums and milk. III. Fate and absorption of cellular and soluble components in the gastrointestinal tract of the newborn. J Immunol 119:245–248PubMedGoogle Scholar
  58. 58.
    Ogra SS, Ogra PL (1978) Immunologic aspects of human colostrums and milk. II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation. J Pediatr 92:550–555PubMedCrossRefGoogle Scholar
  59. 59.
    Crago SS, Prince SJ, Pretlow TG et al (1979) Human colostral cells. I. Separation and characterization. Clin Exp Immunol 38:585–597PubMedGoogle Scholar
  60. 60.
    Xanthou M (1997) Human milk cells. Acta Paediatr 86:890–891CrossRefGoogle Scholar
  61. 61.
    Bertotto A, Gerli R, Fabietti G et al (1990) Human breast milk T lymphocytes display the phenotype and functional characteristics of memory T cells. Eur J Immunol 20:1877–1880PubMedCrossRefGoogle Scholar
  62. 62.
    Kourtis AP, Ibegbu CC, Theiler R et al (2007) Breast milk CD4+ T cells express high levels of C chemokine receptor 5 and CXC chemokine receptor 4 and are preserved in HIV-infected mothers receiving highly active antiretroviral therapy. J Infect Dis 195:965–972PubMedCrossRefGoogle Scholar
  63. 63.
    Bertotto A, Castellucci G, Radicioni M, Bartolucci M, Vaccaro R (1996) CD40 ligand expression on the surface of colostral T cells. Arch Dis Child Fetal Neonatal 74:F135–F136CrossRefGoogle Scholar
  64. 64.
    Davis MK (1991) Human milk and HIV infection: Epidemiologic and laboratory data. In: Mestecky J (ed) Immunology of milk and neonates. Plenum Press, NewYork, pp 271–280CrossRefGoogle Scholar
  65. 65.
    Tuaillon E, Valea D, Becquart P et al (2009) Human Milk-derived B cells: a highly activated switched memory cell population primed to secrete antibodies. J Immunol 182:7155–7162PubMedCrossRefGoogle Scholar
  66. 66.
    Bush JF, Beer AE (1979) Analysis of complement receptors on B-lymphocytes in human milk. Am J Obstet Gynecol 133:708–712PubMedGoogle Scholar
  67. 67.
    Macpherson AJ, McCoy KD, Johansen FE, Brandtzaeg P (2008) The immune geography of IgA induction and function. Mucosal Immunol 1:11–22PubMedCrossRefGoogle Scholar
  68. 68.
    Roux ME, McWilliams M, Phillips-Quagliata JM, Weisz-Carrington P, Lamm ME (1977) Origin of IgA secreting plasma cells in the mammary gland. J Exp Med 146:1311–1322PubMedCrossRefGoogle Scholar
  69. 69.
    Brandtzaeg P (2003) Mucosal immunity: integration between mother and the breast-fed infant. Vaccine 24:3382–3388CrossRefGoogle Scholar
  70. 70.
    Kunkel EJ, Butcher EC (2003) Plasma-cell homing. Nat Rev Immunol 3:822–829PubMedCrossRefGoogle Scholar
  71. 71.
    Williams MB, Rosé JR, Rott LS, Franco MA, Greenberg HB, Butcher EC (1998) The memory B cell subset responsible for the secretory IgA response and protective humoral immunity to rotavirus expresses the intestinal homing receptor, α4β7. J Immunol 161:4227–4235PubMedGoogle Scholar
  72. 72.
    Goldman SS (1993) The immune system of the human milk. Antimicrobial, anti-inflammatory and immunomodulating properties. Pediatr J Infect Dis 12:664–671CrossRefGoogle Scholar
  73. 73.
    Lawrence RM, Lawrence RA (2004) Breast milk and infection. Clin Perinatol 31:501–528PubMedCrossRefGoogle Scholar
  74. 74.
    Goldman AS, Garza C, Nichols BL, Goldblum RM (1982) Immunologic factors in human milk during the first year of lactation. J Pediatr 100:563–567PubMedCrossRefGoogle Scholar
  75. 75.
    Vassilev TL, Veleva KV (1996) Natural polyreactive IgA and IgM autoantibodies in human colostrum. Scand J Immunol 44:535–539PubMedCrossRefGoogle Scholar
  76. 76.
    Bouhlal H, Latry V, Requena M et al (2005) Natural antibodies to CCR5 from breast milk block infection of macrophages and dendritic cells with primary R5-tropic HIV-1. J Immunol 174:7202–7209PubMedGoogle Scholar
  77. 77.
    Notkins AL (2004) Polyreactivity of antibody molecules. Trends Immunol 25:174–179PubMedCrossRefGoogle Scholar
  78. 78.
    Duan B, Morel L (2006) Role of B-1a cells in autoimmunity. Autoimmun Rev 5:403–408PubMedCrossRefGoogle Scholar
  79. 79.
    Avrameas S, Dighiero G, Lymberi P, Guilbert B (1983) Studies on natural antibodies and autoantibodies. Ann Immunol (Paris) 134D:103–113Google Scholar
  80. 80.
    Baumgarth N, Tung JW, Herzenberg LA (2005) Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion. Springer Semin Immunopathol 26:347–362PubMedCrossRefGoogle Scholar
  81. 81.
    Ehrenstein MR, Notley CA (2010) The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 10:778–786PubMedCrossRefGoogle Scholar
  82. 82.
    Ochsenbein AF, Fehr T, Lutz C et al (1999) Control of early viral and bacterial distribution and disease by natural antibodies. Science 286:2156–2159PubMedCrossRefGoogle Scholar
  83. 83.
    Zhou ZH, Zhang Y, Hu YF et al (2007) The broad antibacterial activity of the natural antibody repertoire is due to polyreactive antibodies. Cell Host Microbe 1:51–61PubMedCrossRefGoogle Scholar
  84. 84.
    Quan CP, Berneman A, Pires R, Avrameas S, Bouvet JP (1997) Natural polyreactive secretory immunoglobulin A autoantibodies as a possible barrier to infection in humans. Infect Immun 65:3997–4004PubMedGoogle Scholar
  85. 85.
    Requena M, Bouhlal H, Nasreddine N et al (2008) Inhibition of HIV-1 transmission in trans from dendritic cells to CD4+ T lymphocytes by natural antibodies to the CRD domain of DC-SIGN purified from breast milk and intravenous immunoglobulins. Immunology 123:508–518PubMedCrossRefGoogle Scholar
  86. 86.
    Naarding MA, Dirac AM, Ludwig IS et al (2006) Bile salt-stimulated lipase from human milk binds DC-SIGN and inhibits human immunodeficiency virus type 1 transfer to CD4+ T cells. Antimicrob Agents Chemother 50:3367–3374PubMedCrossRefGoogle Scholar
  87. 87.
    Stax MJ, Naarding MA, Tanck MW et al (2011) Binding of human milk to pathogen receptor DC-SIGN varies with bile salt-stimulated lipase (BSSL) gene polymorphism. PLoS One 6:e17316PubMedCrossRefGoogle Scholar
  88. 88.
    Lehner T, Bergmeier L, Wang Y, Tao L, Mitchell EA (1999) A rational basis for mucosal vaccination against HIV infection. Immunol Rev 170:183–196PubMedCrossRefGoogle Scholar
  89. 89.
    Eslahpazir J, Jenabian MA, Bouhlal B et al (2008) Infection of macrophages and dendritic cells with primary R5-tropic human immunodeficiency virus type 1 inhibited by natural polyreactive anti-CCR5 antibodies purified from cervicovaginal secretions. Clin Vaccine Immunol 15:872–884PubMedCrossRefGoogle Scholar
  90. 90.
    Mouquet H, Scheid JF, Zoller MJ et al (2010) Polyreactivity increases the apparent affinity of anti-HIV antibodies by heteroligation. Nature 467:591–595PubMedCrossRefGoogle Scholar
  91. 91.
    Dimitrov JD, Kazatchkine MD, Kaveri SV, Lacroix-Desmazes S (2011) “Rational vaccine design” for HIV should take into account the adaptive potential of polyreactive antibodies. PLoS Pathog 7:e1002095PubMedCrossRefGoogle Scholar
  92. 92.
    Van de Perre P, Hitimana DG, Lepage P (1988) Human immunodeficiency virus antibodies of IgG, IgA, and IgM subclasses in milk of seropositive mothers. J Pediatr 113:1039–1041PubMedCrossRefGoogle Scholar
  93. 93.
    Belec L, Bouquety JC, Georges A et al (1990) Antibodies to HIV-1 in the breast milk of healthy, seropositive women. Pediatrics 85:1022–1026PubMedGoogle Scholar
  94. 94.
    Van De Perre P, Simonon A, Hitimana DG et al (1993) Infective and anti-infective properties of breastmilk from HIV-1-infected women. Lancet 341:914–918PubMedCrossRefGoogle Scholar
  95. 95.
    Becquart P, Hocini H, Garin B et al (1999) Compartmentalization of the IgG immune response to HIV-1 in breast milk. AIDS 13:1323–1331PubMedCrossRefGoogle Scholar
  96. 96.
    Lü FX (2000) Predominate HIV1-specific IgG activity in various mucosal compartments of HIV1-infected individuals. Clin Immunol 97:59–68PubMedCrossRefGoogle Scholar
  97. 97.
    Kuhn L, Trabattoni D, Kankasa C et al (2006) HIV-specific secretory IgA in breast milk of HIV-positive mothers is not associated with protection against HIV transmission among breast-fed infants. J Pediatr 149:611–616PubMedCrossRefGoogle Scholar
  98. 98.
    Duprat C, Mohammed Z, Datta P et al (1994) HIV-1 IgA antibody in breast milk and serum. Pediatr Infect Dis J 13:603–608PubMedCrossRefGoogle Scholar
  99. 99.
    Hanson LA, Ahlstedt S, Andersson B et al (1984) The immune response of the mammary gland and its significance for the neonate. Ann Allergy 53:576–582PubMedGoogle Scholar
  100. 100.
    Belec L, Georges AJ, Steenman G, Martin PM (1989) Antibodies to HIV in vaginal secretions of heterosexual women. J Infect Dis 160:385–391PubMedCrossRefGoogle Scholar
  101. 101.
    Wolff H, Mayer K, Seage G, Politch J, Horsburgh CR, Anderson D (1992) A comparison of HIV-1 antibody classes, titers, and specificities in paired semen and blood samples from HIV-1 seropositive men. J Acquir Immune Defic Syndr 5:65–69PubMedGoogle Scholar
  102. 102.
    Belec L, Dupre T, Prazuck T et al (1995) Cervicovaginal overproduction of specific IgG to human immunodeficiency virus (HIV) contrasts with normal or impaired IgA local response in HIV infection. J Infect Dis 172:691–697PubMedCrossRefGoogle Scholar
  103. 103.
    Artenstein AW, VanCott TC, Sitz KV et al (1997) Mucosal immune responses in four distinct compartments of women infected with human immunodeficiency virus type 1: a comparison by site and correlation with clinical information. J Infect Dis 175:265–271PubMedCrossRefGoogle Scholar
  104. 104.
    Haimovici F, Mayer KH, Anderson DJ (1997) Quantitation of HIV-1-specific IgG, IgA, and IgM antibodies in human genital tract secretions. J Acquir Immune Defic Syndr Hum Retrovirol 15:185–191PubMedCrossRefGoogle Scholar
  105. 105.
    Raux M, Finkielsztejn L, Salmon-Ceron D et al (1999) Development and standardization of methods to evaluate the antibody response to an HIV-1 candidate vaccine in secretions and sera of seronegative vaccine recipients. J Immunol Methods 222:111–124PubMedCrossRefGoogle Scholar
  106. 106.
    Lu FX (2000) Predominate HIV-1-specific IgG activity in various mucosal compartments of HIV-1-infected individuals. Clin Immunol 97:59–68PubMedCrossRefGoogle Scholar
  107. 107.
    Wright PF, Kozlowski PA, Rybczyk GK et al (2002) Detection of mucosal antibodies in HIV type 1-infected individuals. AIDS Res Hum Retroviruses 18:1291–1300PubMedCrossRefGoogle Scholar
  108. 108.
    Mestecky J, Jackson S, Moldoveanu Z et al (2004) Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 20:972–988PubMedCrossRefGoogle Scholar
  109. 109.
    Alexander R, Mestecky J (2007) Neutralizing antibodies in mucosal secretions: IgG or IgA? Curr HIV Res 5:588–593PubMedCrossRefGoogle Scholar
  110. 110.
    Kozlowski PA, Chen D, Eldridge JH, Jackson S (1994) Contrasting IgA and IgG neutralization capacities and responses to HIV type 1 gp120 V3 loop in HIV-infected individuals. AIDS Res Hum Retroviruses 10:813–822PubMedGoogle Scholar
  111. 111.
    Israel ZR, Marx PA (1995) Nonclassical mucosal antibodies predominate in genital secretions of HIV-1 infected chimpanzees. J Med Primatol 24:53–60PubMedCrossRefGoogle Scholar
  112. 112.
    Schafer F, Kewenig S, Stolte N et al (2002) Lack of simian immunodeficiency virus (SIV) specific IgA response in the intestine of SIV infected rhesus macaques. Gut 50:608–614PubMedCrossRefGoogle Scholar
  113. 113.
    Permar SR, Wilks AB, Ehlinger EP et al (2010) Limited contribution of mucosal IgA to simian immunodeficiency virus (SIV)-specific neutralizing antibody response and virus envelope evolution in breast milk of SIV-infected, lactating rhesus monkeys. J Virol 84:8209–8218PubMedCrossRefGoogle Scholar
  114. 114.
    Holmgren J, Svennerholm A-M (2005) Mucosal immunity to bacteria. In: Mestecky J, Bienenstock J, Lamm M, Mayer L, McGhee J, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 783–797Google Scholar
  115. 115.
    Murphy BR (2005) Mucosal immunity to viruses. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 799–813Google Scholar
  116. 116.
    Rahman MM, Yamauchi M, Hanada N, Nishikawa K, Morishima T (1987) Local production of rotavirus specific IgA in breast tissue and transfer to neonates. Arch Dis Child 62:401–405PubMedCrossRefGoogle Scholar
  117. 117.
    Fishaut M, Murphy D, Neifert M, McIntosh K, Ogra PL (1981) Bronchomammary axis in the immune response to respiratory syncytial virus. J Pediatr 99:186–191PubMedCrossRefGoogle Scholar
  118. 118.
    Nomura M, Imai M, Tsuda F et al (1985) Immunoglobulin A antibody against hepatitis B core antigen in the acute and persistent infection with hepatitis B virus. Gastroenterology 89:1109–1113PubMedGoogle Scholar
  119. 119.
    Engelhard D, Weinberg M, Or R et al (1991) Immunoglobulins A, G, and M to cytomegalovirus during recurrent infection in recipients of allogeneic bone marrow transplantation. J Infect Dis 163:628–630PubMedCrossRefGoogle Scholar
  120. 120.
    Fachiroh J, Schouten T, Hariwiyanto B et al (2004) Molecular diversity of Epstein-Barr virus IgG and IgA antibody responses in nasopharyngeal carcinoma: a comparison of Indonesian, Chinese, and European subjects. J Infect Dis 190:53–62PubMedCrossRefGoogle Scholar
  121. 121.
    Moldoveanu Z, Clements ML, Prince SJ, Murphy BR, Mestecky J (1995) Human immune responses to influenza virus vaccine administered by systemic or mucosal routes. Vaccine 13:1006–1012PubMedCrossRefGoogle Scholar
  122. 122.
    Eriksson K, Kilander A, Hagberg L, Norkrans G, Homgren J, Czerkinsky C (1995) Virus-specific antibody production and polyclonal B-cell activation in the intestinal mucosa of HIV-infected individuals. AIDS 9:695–700PubMedCrossRefGoogle Scholar
  123. 123.
    Kotler DP, Scholes JV, Tierney AR (1987) Intestinal plasma cell alterations in acquired immunodeficiency syndrome. Dig Dis Sci 38:1119–1127CrossRefGoogle Scholar
  124. 124.
    Janoff EN, Jackson S, Wahl SM, Thomas K, Peterman JH, Smith PD (1994) Intestinal immunoglobulins during human immunodeficiency virus type 1 infection. J Infect Dis 170:299–307PubMedCrossRefGoogle Scholar
  125. 125.
    Berberian L, Goodglick L, Kipps TJ, Braun J (1993) Immunoglobulin VH3 gene products: natural ligands for HIV gp120. Science 261:1588–1591PubMedCrossRefGoogle Scholar
  126. 126.
    Xu W, Santini PA, Sullivan JS et al (2009) HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat Immunol 10:1008–1017PubMedCrossRefGoogle Scholar
  127. 127.
    Honjo T, Kinoshita K, Muramatsu M (2002) Molecular mechanisms of class switch recombination: linkage with somatic hypermutation. Annu Rev Immunol 20:165–196PubMedCrossRefGoogle Scholar
  128. 128.
    Tomaras GD, Yates NL, Liu P et al (2008) Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia. J Virol 82:12449–12463PubMedCrossRefGoogle Scholar
  129. 129.
    Mestecky J, Wright PF, Lopalco L et al (2011) Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retroviruses 27:469–486PubMedGoogle Scholar
  130. 130.
    Russell MW, Kilian M (2005) Biological activities of IgA. In: Mestecky J, Bienenstock J, Lamm ME, Mayer L, McGhee JR, Strober W (eds) Mucosal immunology, 3rd edn. Elsevier/Academic Press, Amsterdam, pp 267–289Google Scholar
  131. 131.
    Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 3:42–47PubMedCrossRefGoogle Scholar
  132. 132.
    Hocini H, Belec L, Iscaki S et al (1997) High-level ability of secretory IgA to block HIV type 1 transcytosis: contrasting secretory IgA and IgG responses to glycoprotein 160. AIDS Res Hum Retroviruses 13:1179–1185PubMedCrossRefGoogle Scholar
  133. 133.
    Scarlatti G, Albert J, Rossi V et al (1993) Mother to child transmission of HIV-1: correlation with neutralizing antibodies against primary isolates. J Infect Dis 168:207–210PubMedCrossRefGoogle Scholar
  134. 134.
    Barin F, Jourdain G, Brunet S et al (2006) Revisiting the role of neutralizing antibodies in mother-to-child transmission of HIV-1. J Infect Dis 193:1504–1511PubMedCrossRefGoogle Scholar
  135. 135.
    Dickover R, Garratty E, Yusim K, Miller C, Korber B, Bryson Y (2006) Role of maternal autologous neutralizing antibody in selective perinatal transmission of human immunodeficiency virus type 1 escape variants. J Virol 80:6525–6536PubMedCrossRefGoogle Scholar
  136. 136.
    Rainwater SM, Wu X, Nduati R et al (2007) Cloning and characterization of functional subtype A HIV-1 envelope variants transmitted through breastfeeding. Curr HIV Res 5:189–197PubMedCrossRefGoogle Scholar
  137. 137.
    Banks ND, Kinsey N, Clements J, Hildreth JE (2002) Sustained antibody-dependent cell-mediated cytotoxicity (ADCC) in SIV-infected macaques correlates with delayed progression to AIDS. AIDS Res Hum Retroviruses 18:1197–1205PubMedCrossRefGoogle Scholar
  138. 138.
    Forthal DN, Landucci G, Keenan B (2001) Relationship between antibody-dependent cellular cytotoxicity, plasma HIV type 1 RNA, and CD4+ lymphocyte count. AIDS Res Hum Retroviruses 17:553–561PubMedCrossRefGoogle Scholar
  139. 139.
    Nag P, Kim J, Sapiega V et al (2004) Women with cervicovaginal antibody-dependent cell-mediated cytotoxicity have lower genital HIV-1 RNA loads. J Infect Dis 190:1970–1978PubMedCrossRefGoogle Scholar
  140. 140.
    Xiao P, Zhao J, Patterson LJ et al (2010) Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective efficacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 84:7161–7173PubMedCrossRefGoogle Scholar
  141. 141.
    Van Rompay KK, Berardi CJ, Dillard-Telm S et al (1998) Passive immunization of newborn rhesus macaques prevents oral simian immunodeficiency virus infection. J Infect Dis 177:1247–1259PubMedCrossRefGoogle Scholar
  142. 142.
    Baba TW, Liska V, Hofmann-Lehmann R et al (2000) Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6:200–2006PubMedCrossRefGoogle Scholar
  143. 143.
    Hofmann-Lehmann R, Rasmussen RA, Vlasak J et al (2001) Passive immunization against oral AIDS virus transmission: an approach to prevent mother-to-infant HIV-1 transmission? J Med Primatol 30:190–196PubMedCrossRefGoogle Scholar
  144. 144.
    Ruprecht RM, Hofmann-Lehmann R, Smith-Franklin BA et al (2001) Protection of neonatal macaques against experimental SHIV infection by human neutralizing monoclonal antibodies. Transfus Clin Biol 8:350–358PubMedCrossRefGoogle Scholar
  145. 145.
    Ruprecht RM, Ferrantelli F, Kitabwalla M et al (2003) Antibody protection: passive immunization of neonates against oral AIDS virus challenge. Vaccine 21:3370–3373PubMedCrossRefGoogle Scholar
  146. 146.
    Ferrantelli F, Buckley KA, Rasmussen RA et al (2007) Time dependence of protective post-exposure prophylaxis with human monoclonal antibodies against pathogenic SHIV challenge in newborn macaques. Virology 358: 69–78PubMedCrossRefGoogle Scholar
  147. 147.
    Amedee AM, Lacour N, Ratterree M (2003) Mother-to-infant transmission of SIV via breast-feeding in rhesus macaques. J Med Primatol 32:187–193PubMedCrossRefGoogle Scholar
  148. 148.
    Permar SR, Kang HH, Carville A et al (2008) Potent simian immunodeficiency virus-specific cellular immune responses in the breast milk of simian immunodeficiency virus-infected, lactating rhesus monkeys. J Immunol 181:3643–3650PubMedGoogle Scholar
  149. 149.
    Rychert J, Amedee AM (2005) The antibody response to SIV in lactating rhesus macaques. J Acquir Immune Defic Syndr 38:135–141PubMedCrossRefGoogle Scholar
  150. 150.
    Otsyula MG, Gettie A, Suleman M, Tarara R, Mohamed I, Marx P (1995) Apparent lack of vertical transmission of simian immunodeficiency virus (SIV) in naturally infected African green monkeys, Cercopithecus aethiops. Ann Trop Med Parasitol 89:573–576PubMedGoogle Scholar
  151. 151.
    Wilks AB, Christian EC, Seaman MS et al (2010) Robust vaccine-elicited cellular immune responses in breast milk following systemic simian immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating rhesus monkeys. J Immunol 185:7097–7106PubMedCrossRefGoogle Scholar
  152. 152.
    Sun Y, Asmal M, Lane S et al (2011) Antibody-dependent cell-mediated cytotoxicity in simian immunodeficiency virus-infected rhesus monkeys. J Virol 85:6906–6912PubMedCrossRefGoogle Scholar
  153. 153.
    Moore JS, Rahemtulla F, Kent LW et al (2003) Oral epithelial cells are susceptible to cell-free and cell-associated HIV-1 infection in vitro. Virology 313:343–353PubMedCrossRefGoogle Scholar
  154. 154.
    Malamud D, Wahl SM (2010) The mouth: a gateway or a trap for HIV? AIDS 24:5–16PubMedCrossRefGoogle Scholar
  155. 155.
    Baron S, Poast J, Cloyd MW (1999) Why is HIV rarely transmitted by oral secretions? Saliva can disrupt orally shed, infected leukocytes. Arch Intern Med 159:303–310PubMedCrossRefGoogle Scholar
  156. 156.
    Baron S, Poast J, Richardson CJ et al (2000) Oral transmission of human immunodeficiency virus by infected seminal fluid and milk: a novel mechanism. J Infect Dis 181:498–504PubMedCrossRefGoogle Scholar
  157. 157.
    Rothenberg R, Scarlett M, del Rio C, Reznik D, O’Daniels C (1998) Oral transmission of HIV. AIDS 12:2095–2105PubMedCrossRefGoogle Scholar
  158. 158.
    Carthagena L, Becquart P, Hocini H, Kazatchkine MD, Bouhlal H, Belec L (2011) Modulation of HIV binding to epithelial cells and HIV transfer from immature dendritic cells to CD4 T lymphocytes by human lactoferrin and its major exposed LF-33 peptide. Open Virol J 5:27–34PubMedCrossRefGoogle Scholar
  159. 159.
    McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM (1995) Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J Clin Invest 96:456–464PubMedCrossRefGoogle Scholar
  160. 160.
    Shugars DC (1999) Endogenous mucosal antiviral factors of the oral cavity. J Infect Dis 179:S431–S435PubMedCrossRefGoogle Scholar
  161. 161.
    Leigh JE, Steele C, Wormley FL Jr et al (1998) Th1/Th2 cytokine expression in saliva of HIV-positive and HIV-negative individuals: a pilot study in HIV-positive individuals with oropharyngeal candidiasis. J Acquir Immune Defic Syndr Hum Retrovirol 19:373–380PubMedCrossRefGoogle Scholar
  162. 162.
    McNeely TB, Shugars DC, Rosendahl M, Tucker C, Eisenberg SP, Wahl SM (1997) Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription. Blood 90:1141–1149PubMedGoogle Scholar
  163. 163.
    Meng G, Wei X, Wu X et al (2002) Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat Med 8:150–156PubMedCrossRefGoogle Scholar
  164. 164.
    John-Stewart GC, Mbori-Ngacha D, Payne BL et al (2009) HIV-1-specific cytotoxic T lymphocytes and breast milk HIV-1 transmission. J Infect Dis 199:889–898PubMedCrossRefGoogle Scholar
  165. 165.
    Chun TW, Carruth L, Finzi D et al (1997) Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387:183–188PubMedCrossRefGoogle Scholar
  166. 166.
    Sacha JB, Chung C, Rakasz EG et al (2007) Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol 178:2746–2754PubMedGoogle Scholar
  167. 167.
    Miller CJ, Marthas M, Torten J et al (1994) Intravaginal inoculation of rhesus macaques with cell-free simian immunodeficiency virus results in persistent or transient viremia. J Virol 68:6391–6400PubMedGoogle Scholar
  168. 168.
    Farquhar C, Rowland-Jones S, Mbori-Ngacha D et al (2004) Human leukocyte antigen (HLA) B*18 and protection against mother-to-child HIV type 1 transmission. AIDS Res Hum Retroviruses 20:692–697PubMedCrossRefGoogle Scholar
  169. 169.
    Farquhar C, John-Stewart G (2003) The role of infant immune responses and genetic factors in preventing HIV-1 acquisition and disease progression. Clin Exp Immunol 134:367–377PubMedCrossRefGoogle Scholar
  170. 170.
    Wilson C (2005) Developmental immunology and role of host defenses in neonatal susceptibility. In: RemingtonJ KleinJ (ed) Infectious diseases of the fetus and newborn infant, 6th edn. WB Saunders Company, Philadelphia, PA, pp 37–49Google Scholar
  171. 171.
    Johnson DC, McFarland EJ, Muresan P et al (2005) Safety and immunogenicity of an HIV-1 recombinant canarypox vaccine in newborns and infants of HIV-1-infected women. J Infect Dis 192:2129–2133PubMedCrossRefGoogle Scholar
  172. 172.
    Farquhar C, Van Cott T, Bosire R et al (2008) Salivary human immunodeficiency virus (HIV)-1-specific ­immunoglobulin A in HIV-1-exposed infants in Kenya. Clin Exp Immunol 153:37–43PubMedCrossRefGoogle Scholar
  173. 173.
    Ebrahim GJ (1995) Breast milk immunology. J Trop Pediatr 4:2–4CrossRefGoogle Scholar
  174. 174.
    Michie CA, Tantscher E, Schall T, Rot A (1998) Physiological secretion of chemokines in human breast milk. Eur Cytokine Netw 9:123–129PubMedGoogle Scholar
  175. 175.
    Jia HP, Starner T, Ackermann M et al (2001) Abundant human beta-defensin-1 expression in milk and mammary gland epithelium. J Pediatr 138:109–112PubMedCrossRefGoogle Scholar
  176. 176.
    Tunzi CR, Harper PA, Bar-Oz B et al (2000) Beta-defensin expression in human mammary gland epithelia. Pediatr Res 48:30–35PubMedCrossRefGoogle Scholar
  177. 177.
    Farquhar C, Van Cott TC, Mbori-Ngacha DA et al (2002) Salivary secretory leukocyte protease inhibitor is associated with reduced transmission of HIV-1 through breast milk. J Infect Dis 186:1173–1176PubMedCrossRefGoogle Scholar
  178. 178.
    Farquhar C, Mbori-Ngacha DA, Redman MW et al (2005) CC and CXC chemokines in breastmilk are associated with mother-to-child HIV-1 transmission. Curr HIV Res 3:361–369PubMedCrossRefGoogle Scholar
  179. 179.
    Saidi H, Eslahpazir J, Carbonneil C et al (2006) Differential modulation of human lactoferrin activity against both R5 and X4-HIV-1 adsorption on epithelial cells and dendritic cells by natural antibodies. J Immunol 177: 5540–5549PubMedGoogle Scholar
  180. 180.
    Bosire R, Guthrie BL, Lohman-Payne B et al (2007) Longitudinal comparison of chemokines in breastmilk early postpartum among HIV-1-infected and uninfected Kenyan women. Breastfeed Med 2:129–138PubMedCrossRefGoogle Scholar
  181. 181.
    Bosire R, John-Stewart GC, Mabuka JM et al (2007) Breast milk alpha-defensins are associated with HIV type 1 RNA and CC chemokines in breast milk but not vertical HIV type 1 transmission. AIDS Res Hum Retroviruses 23:198–203PubMedCrossRefGoogle Scholar
  182. 182.
    Walter J, Kuhn L, Ghosh MK et al (2007) Low and undetectable breast milk interleukin-7 concentrations are associated with reduced risk of postnatal HIV transmission. J Acquir Immune Defic Syndr 46:200–207PubMedCrossRefGoogle Scholar
  183. 183.
    Lyimo MA, Howell AL, Balandya E, Eszterhas SK, Connor RI (2009) Innate factors in human breast milk inhibit cell-free HIV-1 but not cell-associated HIV-1 infection of CD4+ cells. J Acquir Immune Defic Syndr 51:117–124PubMedCrossRefGoogle Scholar
  184. 184.
    Saeland E, de Jong MA, Nabatov AA, Kalay H, Geijtenbeek TB, van Kooyk Y (2009) MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Mol Immunol 46:2309–2316PubMedCrossRefGoogle Scholar
  185. 185.
    Walter J, Ghosh MK, Kuhn L et al (2009) High concentrations of interleukin 15 in breast milk are associated with protection against postnatal HIV transmission. J Infect Dis 200:1498–1502PubMedCrossRefGoogle Scholar
  186. 186.
    Lohman BL, Slyker J, Mbori-Ngacha D et al (2003) Prevalence and magnitude of human immunodeficiency virus (HIV) type 1-specific lymphocyte responses in breast milk from HIV-1-seropositive women. J Infect Dis 188: 1666–1674PubMedCrossRefGoogle Scholar
  187. 187.
    Sabbaj S, Edwards BH, Ghosh MK et al (2002) Human immunodeficiency virus-specific CD8(+) T cells in human breast milk. J Virol 76:7365–7373PubMedCrossRefGoogle Scholar
  188. 188.
    Sabbaj S, Ghosh MK, Edwards BH et al (2005) Breast milk-derived antigen-specific CD8+ T cells: an extralymphoid effector memory cell population in humans. J Immunol 174:2951–2956PubMedGoogle Scholar
  189. 189.
    Miller M, Iliff P, Stoltzfus RJ, Humphrey J (2002) Breast milk erythropoietin and mother to child HIV transmission through breastmilk. Lancet 360:1246–1248PubMedCrossRefGoogle Scholar
  190. 190.
    Arsenault JE, Webb AL, Koulinska IN, Aboud S, Fawzi WW, Villamor E (2010) Association between breast milk erythropoietin and reduced risk of mother-to-child transmission of HIV. J Infect Dis 202:370–373PubMedCrossRefGoogle Scholar
  191. 191.
    Van De Perre P (2003) Transfer of antibody via mother’s milk. Vaccine 21:3374–3376PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Sorbonne Paris Cité (Paris V), and Laboratoire de Virologie, Hôpital Européen Georges PompidouUniversité Paris DescartesParis Cedex 15France
  2. 2.Division of Reproductive HealthNCCDPHP, Centers for Disease Control and PreventionAtlantaUSA

Personalised recommendations