The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems

  • N. D. Browning
  • J. P. Buban
  • M. Chi
  • B. Gipson
  • M. Herrera
  • D. J. Masiel
  • S. Mehraeen
  • D. G. Morgan
  • N. L. Okamoto
  • Q. M. Ramasse
  • B. W. Reed
  • H. Stahlberg


In this chapter, the basic principles of atomic resolution scanning transmission electron microscopy (STEM) will be described. Particular attention will be paid to the benefits of the incoherent Z-contrast imaging technique for structural determination and the benefits of aberration correction for improved spatial resolution and sensitivity in the acquired images. In addition, the effect that the increased beam current in aberration corrected systems has on electron beam-induced structural modifications of inorganic systems will be discussed. Procedures for controlling the electron dose will be described along with image processing methods that enable quantified information to be extracted from STEM images. Several examples of the use of aberration-corrected STEM for the study of nanoscale systems will be presented; a quantification of vacancies in clathrate systems, a quantification of N doping in GaAs, a quantification of the size distribution in nanoparticle catalysts, and an observation of variability in dislocation core composition along a low-angle grain boundary in SrTiO3. The potential for future standardized methods to reproducibly quantify structures determined by STEM and/or high-resolution TEM will also be discussed.


  1. 1.
    Hirsch PB, Horne RW, Whelan MJ (1956) Direct observation of the arrangement and motion of dislocations in aluminum. Philos Mag 1:677CrossRefGoogle Scholar
  2. 2.
    Jia CL, Urban K (2004) Atomic resolution measurement of oxygen concentration in oxide materials. Science 303:2001–2004CrossRefGoogle Scholar
  3. 3.
    Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392:768–769CrossRefGoogle Scholar
  4. 4.
    Batson PE, Dellby N, Krivanek OL (2002) Sub-angstrom resolution using aberration corrected optics. Nature 418:617–620CrossRefGoogle Scholar
  5. 5.
    Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic resolution imaging with a sub-50 pm electron probe. Phys Rev Lett 102:096101CrossRefGoogle Scholar
  6. 6.
    Muller DA, Kourkoutis LF, Murfitt M, Song JH, Wang HY, Silcox J, Dellby N, Krivanek OL (2008) Atomic scale chemical imaging of composition and bonding by aberration corrected microscopy. Science 319:1073–1076CrossRefGoogle Scholar
  7. 7.
    Kimoto K, Asaka T, Nagai T, Saito M, Matsui Y, Ishizuka K (2007) Element selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702–704CrossRefGoogle Scholar
  8. 8.
    Lazar S, Hebert C, Zandbergen HW (2004) Investigation of hexagonal and cubic GaN by high resolution EELS and DFT. Ultramicroscopy 98:249–257CrossRefGoogle Scholar
  9. 9.
    Mitterbauer C, Kothleitner G, Grogger W, Zandbergen H, Freitag B, Tiemeijer P, Hofer F (2003) Electron energy loss near edge structures of 3d transition metal oxides recorded at high energy resolution. Ultramicroscopy 96:469–480CrossRefGoogle Scholar
  10. 10.
    Nelayah J, Kociak M, Stephan O, de Abajo FJG, Tence M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzan LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3:348–353CrossRefGoogle Scholar
  11. 11.
    Arslan I, Hyun JK, Erni R, Fairchild MN, Hersee SD, Muller DA (2009) Using electrons as a high resolution probe of optical modes in individual nanowires. Nano Lett 9:4073–4077CrossRefGoogle Scholar
  12. 12.
    Frank J, Chiu W, Degn L (1988) The characterization of structural variations within a crystal field. Ultramicroscopy 26:345–360CrossRefGoogle Scholar
  13. 13.
    Glaeser RM, Downing K, DeRosier D, Chiu W, Frank J (2007) Electron crystallography of biological macromolecules, Oxford University Press, New YorkGoogle Scholar
  14. 14.
    Unwin PN, Henderson R (1975) Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440CrossRefGoogle Scholar
  15. 15.
    van Heel M, Frank J (1981) Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194Google Scholar
  16. 16.
    Kuhlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621CrossRefGoogle Scholar
  17. 17.
    Morgan D, Grant RA, Chiu W, Frank J (1992) Patch averaging of electron images of GP3 ∗ I crystals with variable thickness. J Struct Biol 108:245–256CrossRefGoogle Scholar
  18. 18.
    Hardt S, Wang B, Schmid MF (1996) A brief description of I.C.E.: the integrated crystallographic environment. J Struct Biol 116:68–70CrossRefGoogle Scholar
  19. 19.
    Hayward SB, Stroud RM (1981) Projected structure of purple membrane determined to 3.7 A resolution by low temperature electron microscopy. J Mol Biol 151:491–517CrossRefGoogle Scholar
  20. 20.
    Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213:899–929CrossRefGoogle Scholar
  21. 21.
    Henderson R, Baldwin JM, Downing KH, Lepault J, Zemlin F (1986) Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 A resolution. Ultramicroscopy 19:147–178CrossRefGoogle Scholar
  22. 22.
    Henderson R, Glaeser RM (1985) Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150CrossRefGoogle Scholar
  23. 23.
    Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32CrossRefGoogle Scholar
  24. 24.
    Gonen T, Sliz P, Kistler J, Cheng Y, Walz T (2004) Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature 429:193–197CrossRefGoogle Scholar
  25. 25.
    Crewe AV, Wall J, Langmore J (1970) Visibility of single atoms. Science 168:1338–1339CrossRefGoogle Scholar
  26. 26.
    LeBeau JM, D’Alfonso AJ, Findlay SD, Stemmer S, Allen LJ (2009) Quantitative comparisons of contrast in experimental and simulated bright-field STEM images. Phys Rev B Condens Matter Mater Phys 80:174106Google Scholar
  27. 27.
    Pennycook SJ, Boatner LA (1988) Chemically sensitive structure-imaging with a scanning-transmission electron-microscope. Nature 336:565–567CrossRefGoogle Scholar
  28. 28.
    Hillyard S, Loane RF, Silcox J (1993) Annular dark-field imaging—resolution and thickness effects. Ultramicroscopy 49:14–25CrossRefGoogle Scholar
  29. 29.
    Loane RF, Xu P, Silcox J (1992) Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40:121–138CrossRefGoogle Scholar
  30. 30.
    Amali A, Rez P (1997) Theory of lattice resolution in high-angle annular dark-field images. Microsc Microanal 3:28–46Google Scholar
  31. 31.
    Jesson DE, Pennycook SJ (1995) Incoherent imaging of crystals using thermally scattered electrons. Proc R Soc Lond A Math Phys Sci 449:273–293CrossRefGoogle Scholar
  32. 32.
    Nellist PD, Pennycook SJ (1999) Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78:111–124CrossRefGoogle Scholar
  33. 33.
    Browning ND, Chisholm MF, Pennycook SJ (1993) Atomic resolution chemical analysis using a STEM. Nature 366:143–146CrossRefGoogle Scholar
  34. 34.
    Browning ND, Pennycook SJ (1993) Atomic resolution spectroscopy for the microanalysis of materials. Microbeam Anal 2:81–89Google Scholar
  35. 35.
    Batson PE (1993) Simultaneous stem imaging and electron-energy-loss spectroscopy with atomic-column sensitivity. Nature 366:727–728CrossRefGoogle Scholar
  36. 36.
    Muller DA, Tzou Y, Ray R, Silcox J (1993) Mapping SP2 and SP3 states of carbon at subnanometer spatial resolution. Nature 366:725–727CrossRefGoogle Scholar
  37. 37.
    Duscher G, Browning ND, Pennycook SJ (1998) Atomic column resolved EELS. Physica Status Solidi 166:327–342CrossRefGoogle Scholar
  38. 38.
    Klenov DO, Stemmer S (2006) Contributions to contrast in experimental high-angle annular dark field images. Ultramicroscopy 106:889–901CrossRefGoogle Scholar
  39. 39.
    LeBeau JM, Findlay SD, Allen LJ, Stemmer S (2008) Quantitative atomic resolution STEM. Phys Rev Lett 100:206101CrossRefGoogle Scholar
  40. 40.
    Findlay SD, Klenov DO, Stemmer S, Allen LJ (2008) Atomic number contrast in high angle annular dark field imaging of crystals. Mater Sci Technol 24:660–666CrossRefGoogle Scholar
  41. 41.
    LeBeau JM, Stemmer S (2008) Experimental quantification of annular dark field images in STEM. Ultramicroscopy 108:1653–1658CrossRefGoogle Scholar
  42. 42.
    LeBeau JM, Findlay SD, Wang XQ, Jacobson AJ, Allen LJ, Stemmer S (2009) High angle scattering of fast electrons from crystals containing heavy elements: simulation and experiment. Phys Rev B Condens Matter Mater Phys 79:214110Google Scholar
  43. 43.
    Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23:77–96CrossRefGoogle Scholar
  44. 44.
    Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90:71–83CrossRefGoogle Scholar
  45. 45.
    James EM, Browning ND (1999) Practical aspects of atomic resolution imaging and spectroscopy in STEM. Ultramicroscopy 78:125–139CrossRefGoogle Scholar
  46. 46.
    Dellby N, Krivanek OL, Nellist PD, Batson PE, Lupini AR (2001) Progress in aberration-corrected STEM,. J Electron Microsc 50:177–185CrossRefGoogle Scholar
  47. 47.
    Krivanek OL, Dellby N, Lupini AR (2000) Advances in Cs-corrected STEM. Proceedings of the 12th EUREM Congress, Brno I, 149–150Google Scholar
  48. 48.
    Krivanek OL, Nellist PD, Dellby N, Murfitt MF, Szilagyi Z (2003) Towards sub-0.5 angstrom beams. Ultramicroscopy 96:229–237CrossRefGoogle Scholar
  49. 49.
    Xu X, Beckman SP, Specht P, Weber ER, Chrzan DC, Arslan I, Erni RP, Browning ND Bleloch A, Kisielowski C (2005) Distortion and segregation in a dislocation core region with atomic resolution. Phys Rev Lett 95:145501CrossRefGoogle Scholar
  50. 50.
    Klie RF, Buban JP, Varela M, Franceschetti A, Joos C, Zhu Y, Browning ND, Pantelides ST, Pennycook SJ (2005) A cooperative doping mechanism to enhance grain boundary transport in high-Tc superconductors. Nature 435:475–478CrossRefGoogle Scholar
  51. 51.
    Buban JP, Matsunaga K, Chen J, Shibata N, Ching WY, Yamamoto T, Ikuhara Y (2006) Grain boundary strengthening in alumina by rare earth impurities. Science 311:212CrossRefGoogle Scholar
  52. 52.
    Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark field microscopy. Nature 464:571–574CrossRefGoogle Scholar
  53. 53.
    Winkelman GB, Dwyer C, Hudson TS, Nguyen-Manh D, Doblinger M, Satet RL, Hoffmann MJ, Cockayne DJH (2004) Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride. Philos Mag Lett 84:755–762CrossRefGoogle Scholar
  54. 54.
    van Benthem K, Lupini AR, Kim M, Baik HS, Doh S, lee JH, Oxley MP, Findlay SD, Allen LJ, Luck JT, Pennycook SJ (2005) Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87:034104Google Scholar
  55. 55.
    Cosgriff EC, D’Alfonso AJ, Allen LJ, Findlay SD, Kirkland AI, Nellist PD (2008) 3-D imaging in double aberration corrected scanning confocal electron microscopy, Part 1: elastic scattering. Ultramicroscopy 108:1558–1566CrossRefGoogle Scholar
  56. 56.
    D’Alfonso AJ, Cosgriff EC, Findlay SD, Behan G, Kirkland AI, Nellist PD, Allen LJ (2008) 3-D imaging in double aberration corrected scanning confocal electron microscopy, Part 2: inelastic scattering. Ultramicroscopy 108:1567–1578CrossRefGoogle Scholar
  57. 57.
    Xin HL, Muller DA (2009) Aberration corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58:157–165CrossRefGoogle Scholar
  58. 58.
    Arslan I, Yates TJ, Browning ND, Midgley PA (2005) Embedded nanostructures revealed in 3-D. Science 309:2195–2198CrossRefGoogle Scholar
  59. 59.
    Arslan I, Tong J. R, Midgley P. A, Reducing the Missing Wedge: High-Resolution Dual Axis Tomography of Inorganic Materials, Ultramicroscopy 106, 994–1000 (2006)Google Scholar
  60. 60.
    Mohanty P, Ortalan V, Browning ND, Arslan I, Fei Y, Landskron K Direct formation of mesoporous coesite single crystals from periodic mesoporous silica at extreme pressure. Angew Chem (in press)Google Scholar
  61. 61.
    Evans JE, Hetherington C, Kirkland A, Stahlberg H, Browning ND (2008) Low-dose aberration corrected cryo-electron microscopy for organic specimens. Ultramicroscopy 108:1636–1644CrossRefGoogle Scholar
  62. 62.
    Ortalan V, Uzun A, Gates BC, Browning ND Atomic-scale direct imaging of single metal atoms and metal clusters in the pores of dealuminated HY zeolite. Nat Nanotechnol (in press)Google Scholar
  63. 63.
    Buban JP, Ramasse QM, Gipson B, Browning ND, Stahlberg H (2010) Towards low-dose imaging in STEM. J Electron Microsc 59:91–102CrossRefGoogle Scholar
  64. 64.
    Reed BW, Armstrong MR, Browning ND, Campbell GH, Evans JE, LaGrange TB, Masiel DJ (2009) The evolution of ultrafast electron microscope instrumentation. Microsc Microanal 15:272–281CrossRefGoogle Scholar
  65. 65.
    Neiner D, Okamoto NL, Condron CL, Ramasse QM, Yu P, Browning ND, Kauzlarich SM (2007) Hydrogen encapsulation in a silicon clathrate Type I structure: Na55(H2)2. 15Si46: synthesis and characterization. J Am Chem Soc 129:13857–13862CrossRefGoogle Scholar
  66. 66.
    Morgan DG, Ramasse QM, Browning ND (2009) Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images. J Electron Microsc 58:223–244CrossRefGoogle Scholar
  67. 67.
    Herrera M, Ramasse QM, Morgan DG, Gonzalez D, Pizarro J, Yáñez A, Galindo P, Garcia R, Du M-H, Zhang SB, Hopkinson M, Browning ND (2009) Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of gas. Phys Rev B Condens Matter Mater Phys 80:125211Google Scholar
  68. 68.
    Perovic DD, Rossouw CJ, Howie A (1993) Imaging elastic strains in HAADF STEM. Ultramicroscopy 52:353–359CrossRefGoogle Scholar
  69. 69.
    Treacy MMJ, Gibson JM, Short KT, Rice SB (1988) Channeling effects from impurity atoms in the HAADF of the STEM. Ultramicroscopy 26:133–142CrossRefGoogle Scholar
  70. 70.
    Grillo V, Carlino E, Glas F (2008) Influence of the static atomic displacement on atomic resolution Z-contrast imaging. Phys Rev B Condens Matter Mater Phys 77:054103Google Scholar
  71. 71.
    Wu X, Robertson MD, Gupta JA, Baribeau JM (2008) Strain contrast of GaNyAs1 − y (y = 0. 029 and 0.045) epitaxial layers on (100) GaAs substrates in annular dark field images. J Phys Condens Matter 20:075215Google Scholar
  72. 72.
    Pizarro J, Galindo PL, Guerrero E, Yanez A, Guerrero MP, Rosenauer A, Sales DL, Molina SI (2008) Simulation of high angle annular dark field STEM images of large nanostructures. Appl Phys Lett 93:153107CrossRefGoogle Scholar
  73. 73.
    Du MH, Limpijumnong S, Zhang SB (2006) Hydrogen mediated nitrogen clustering in dilute II-V nitrides. Phys Rev Lett 97:075503CrossRefGoogle Scholar
  74. 74.
    Mannhart J, Chaudhari P, Dimos D, Tsuei CC, McGuire TR (1988) Critical currents in [001] grains and across their tilt boundaries in YBa2Cu3O7 films. Phys Rev Lett 61:2476–2479CrossRefGoogle Scholar
  75. 75.
    Dimos D, Chaudhari P, Mannhart J (1990) Superconducting transport-properties of grain-boundaries in YBa3Cu3O7 bicrystals. Phys Rev B Condens Matter Mater Phys 41:4038Google Scholar
  76. 76.
    Mathur ND, Burnell G, Isaac SP, Jackson TJ, Teo BS, MacManus-Driscoll JL, Cohen LF, Evetts JE, Blamire MG (1997) Large low-field magnetoresistance in La0. 7Ca0. 3MnO3 induced by artificial grain boundaries. Nature 387:266Google Scholar
  77. 77.
    Zhang N, Ding WP, Zhong W, Xing DY, Du YW (1997) Tunnel-type giant magnetoresistance in the granular perovskite La0. 85Sr0. 15MnO3. Phys Rev B Condens Matter Mater Phys 56:8138Google Scholar
  78. 78.
    Heywang W (1964) Resistivity anomaly in doped barium titanate. J Am Ceram Soc 47:484CrossRefGoogle Scholar
  79. 79.
    Kienzle O, Exner M, Ernst F (1998) Atomistic structure of Σ  = 3, (111) grain boundaries in strontium titanate. Phys Status Solidi A 166:57CrossRefGoogle Scholar
  80. 80.
    McIntyre PC (2000) Equilibrium point defect and electronic carrier distribution near interfaces in acceptor-doped strontium titanate. J Am Ceram Soc 83:1129CrossRefGoogle Scholar
  81. 81.
    Lee SB, Sigle W, Ruhle M (2003) Faceting behavior of an asymmetric SrTiO3 Sigma 5 [001] tilt grain boundary close to its defaceting transition. Acta Mater 51:4583CrossRefGoogle Scholar
  82. 82.
    Zhang ZL, Sigle W, Phillipp F, Ruhle M (2003) Direct atom-resolved imaging of oxides and their grain boundaries. Science 302:846CrossRefGoogle Scholar
  83. 83.
    De Souza RA, Fleig J, Maier J, Kienzle O, Zhang ZL, Sigle W, Ruhle M (2003) Electrical and structural characterization of a low-angle tilt grain boundary in iron-doped strontium titanate. J Am Ceram Soc 86:922CrossRefGoogle Scholar
  84. 84.
    Saylor DM, El Dasher B, Sano T, Rohrer GS (2004) Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J Am Ceram Soc 87:670–676CrossRefGoogle Scholar
  85. 85.
    Park MB, Shih SJ, Cockayne DJH (2007) The preferred CSL misorientation distribution in polycrystalline SrTiO3. J Microsc 227:292CrossRefGoogle Scholar
  86. 86.
    Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University PressGoogle Scholar
  87. 87.
    McGibbon MM, Browning ND, Chisholm MF, McGibbon AJ, Pennycook SJ, Ravikumar V, Dravid VP (1994) Direct determination of grain boundary atomic structure in SrTiO3. Science 266:102–104CrossRefGoogle Scholar
  88. 88.
    Browning ND, Pennycook SJ, Chisholm MF, McGibbon MM, McGibbon AJ (1995) Observation of structural units at [001] symmetric tilt boundaries in SrTiO3. Interface Sci 2:397–423CrossRefGoogle Scholar
  89. 89.
    McGibbon MM, Browning ND, McGibbon AJ, Chisholm MF, Pennycook SJ (1996) Atomic structures of asymmetric [001] tilt boundaries in srtio3. Philos Mag A 73:625–641CrossRefGoogle Scholar
  90. 90.
    Browning ND, Pennycook SJ (1996) Direct experimental determination of the atomic structure at internal interfaces. J Phys D 29:1779–1794CrossRefGoogle Scholar
  91. 91.
    Hull D, Bacon DJ (2001) Introduction to dislocations. ElsevierGoogle Scholar
  92. 92.
    Browning ND, Buban JP, Moltaji HO, Duscher G, Pennycook SJ, Rodrigues RP, Johnson K, Dravid VP (1999) The atomic origins of electrical barriers at grain boundaries in SrTiO3. Appl Phys Lett 74:2638–2640CrossRefGoogle Scholar
  93. 93.
    Klie RF, Browning ND (2000) Atomic scale characterization of a temperature dependence to oxygen vacancy segregation at srtio3 grain boundaries. Appl Phys Lett 77:3737–3739CrossRefGoogle Scholar
  94. 94.
    Kim M, Duscher G, Browning ND, Pennycook SJ, Sohlberg K, Pantelides ST (2001) Non-stoichiometry and the electrical activity of grain boundaries in srtio3. Phys Rev Lett 86:4056–4069CrossRefGoogle Scholar
  95. 95.
    Buban JP, Chi M, Masiel DJ, Bradley JP, Jiang B, Stahlberg H, Browning ND (2009) Structural variability of edge dislocations in a SrTiO3 low-angle [001] tilt grain boundary. J Mater Res 24:2191–2199CrossRefGoogle Scholar
  96. 96.
    Technology Vision 2020, The U.S. Chemical Industry, published by the American Chemical Society, American Institute of Chemical Engineers, the Chemical Manufacturers Association, the Council for Chemical research, and the Synthetic Organic Chemical Manufacturers Association (1996)Google Scholar
  97. 97.
    Catalysis Looks to the Future (1992) Report by panel on new directions in catalytic science and technology, Board on Chemical Sciences and Technology. National Research Council, National Academy Press, WashingtonGoogle Scholar
  98. 98.
    Critical Technologies (1992) The role of chemistry and chemical engineering, report by committee on critical technologies: the role of chemistry and chemical engineering in maintaining and strengthening american technology, board on chemical sciences and technology. National Academy Press, WashingtonGoogle Scholar
  99. 99.
    Batson PE (2008) Motion of gold atoms on carbon in aberration corrected STEM. Microsc Microanal 14:89–97Google Scholar
  100. 100.
    Reed BW, Morgan DG, Okamoto NL, Kulkarni A, Gates BC, Browning ND (2009) Validation and generalization of a method for precise size measurements of metal nanoclusters. Ultramicroscopy 110:48–60CrossRefGoogle Scholar
  101. 101.
    Okamoto NL, Reed BW, Mehraeen S, Kulkarni A, Morgan DG, Gates BC, Browning ND (2008) Determination of nanocluster sizes from dark-field scanning transmission electron microscopy images. J Phys Chem C 112:1759–1763CrossRefGoogle Scholar
  102. 102.
    Johansson M, Lindén AA, Bäckvall JE (2005) Osmium catalyzed dihydroxylation of alkenes by H2O2 in room temperature ionic liquid co-catalyzed by VO(acac)(2) or MeReO3. J Organomet Chem 690:3614CrossRefGoogle Scholar
  103. 103.
    Bhirud VA, Iddir H, Browning ND, Gates BC (2005) Intact and fragmented triosmium clusters on MgO: characterization by X-ray absorption spectroscopy and high-resolution transmission electron microscopy. J Phys Chem B 109:12738–12741CrossRefGoogle Scholar
  104. 104.
    Lamb H. H and Gates B. C, Characterization of decaosmium carbide carbonyl clusters supported on MgO, Journal of Physical Chemistry 96, 1099–1105 (1992)Google Scholar
  105. 105.
    Allard LF, Panjabi GA, Salvi SN, Gates BC (2002) Imaging of nearly uniform Os5C clusters dispersed on MgO powder. Nano Lett 2:381–384CrossRefGoogle Scholar
  106. 106.
    Lamb HH, Gates BC (1992) Characterization of decaosmium carbide carbonyl clusters supported on MgO. J Phys Chem 96:1099–1105CrossRefGoogle Scholar
  107. 107.
    Jackson PF, Johnson BFG, Lewis J, Nelson WJH (1982) The synthesis of Te cluster dianion by pyrolysis—X-ray structure analysis of [N(PPH3)2]2[Os10C(CO)24] and [Os5C(CO)14H(NC5H4)]. J Chem Soc Dalton Trans 10:2099–2107CrossRefGoogle Scholar
  108. 108.
    Corey ER, Dahl LF (1962) Molecular and crystal structure of Os3(CO)12. Inorg Chem 1:521CrossRefGoogle Scholar
  109. 109.
    NIST Standard Reference Database 64: NIST Electron Elastic-Scattering Cross-Section Database, V. 3.1, 2003 (copyright U.S. Secretary of Commerce). (accessed July 4, 2007)

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • N. D. Browning
    • 1
    • 2
    • 3
  • J. P. Buban
    • 2
  • M. Chi
    • 4
  • B. Gipson
    • 5
  • M. Herrera
    • 6
  • D. J. Masiel
    • 1
  • S. Mehraeen
    • 2
  • D. G. Morgan
    • 1
  • N. L. Okamoto
    • 7
  • Q. M. Ramasse
    • 9
  • B. W. Reed
    • 8
  • H. Stahlberg
    • 5
  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California-DavisDavisUSA
  2. 2.Department of Molecular and Cellular BiologyUniversity of California-DavisDavisUSA
  3. 3.Chemical and Materials Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  4. 4.Materials Science DivisionOak Ridge National LaboratoryOak RidgeUSA
  5. 5.C-CINA, BiozentrumUniversity BaselBaselSwitzerland
  6. 6.Departamento de Ciencia de los Materiales e Ingeniería Metalurgica y Química Inorgánica, Facultad de CienciasUniversidad de CádizPuerto Real (Cádiz)Spain
  7. 7.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan
  8. 8.Condensed Matter and Materials Division, Physical and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  9. 9.SuperSTEM Laboratory, J BlockSTFC DaresburyDaresburyUK

Personalised recommendations