Skip to main content

DNA Nanorobotics

  • Chapter
  • First Online:
Book cover Nanorobotics

Abstract

This chapter overviews the current state of the emerging discipline of DNA nanorobotics that make use of synthetic DNA to self-assemble operational molecular-scale devices. Recently there have been a series of quite astonishing experimental results—which have taken the technology from a state of intriguing possibilities into demonstrated capabilities of quickly increasing scale and complexity. We first state the challenges in molecular robotics and discuss why DNA as a nanoconstruction material is ideally suited to overcome these. We then review the design and demonstration of a wide range of molecular-scale devices; from DNA nanomachines that change conformation in response to their environment to DNA walkers that can be programmed to walk along predefined paths on nanostructures while carrying cargo or performing computations, to tweezers that can repeatedly switch states. We conclude by listing major challenges in the field along with some possible future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winfree E, Liu F, Wenzler L, Seeman N (1998) Design and self-assembly of two-dimensional DNA crystals. Nature 394:539–544

    Article  Google Scholar 

  2. LaBean T, Yan H, Kopatsch J, Liu F, Winfree E, Reif J, Seeman N (2000) Construction, analysis, ligation, and self-assembly of DNA triple crossover complexes. J Am Chem Soc 122(9):1848–1860

    Article  Google Scholar 

  3. Yan H, Park SH, Finkelstein G, Reif J, LaBean T (2003) DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641):1882–1884

    Article  Google Scholar 

  4. Shih W, Quispe J, Joyce G (2004) A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 427(6975):618–621

    Article  Google Scholar 

  5. He Y, Chen Y, Liu H, Ribbe A, Mao C (2005) Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J Am Chem Soc 127(35):12202–12203

    Article  Google Scholar 

  6. Rothemund P (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  Google Scholar 

  7. He Y, Ye T, Su M, Zhang C, Ribbe A, Jiang W, Mao C (2008) Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452(7184):198–201

    Article  Google Scholar 

  8. Douglas S, Dietz H, Liedl T, Hogberg B, Graf F, Shih W (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    Article  Google Scholar 

  9. Dietz H, Douglas S, Shih W (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    Article  Google Scholar 

  10. Zheng J, Birktoft J, Chen Y, Wang T, Sha R, Constantinou P, Ginell S, Mao C, Seeman N (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461(7260):74–78

    Article  Google Scholar 

  11. Yildiz A, Tomishige M, Vale R, Selvin P (2004) Kinesin walks hand-over-hand. Science 303(5658):676–678

    Article  Google Scholar 

  12. Toyoshima YY, Kron S, McNally E, Niebling K, Toyoshima C, Spudich J (1987) Myosin subfragment-1 is sufficient to move actin filaments in vitro. Nature 328(6130):536–539

    Article  Google Scholar 

  13. Pohl F, Jovin T (1972) Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC). Angew Chem Int Ed 67(3):375–396

    Google Scholar 

  14. Mao C, Sun W, Shen Z, Seeman N (1999) A nanomechanical device based on the B–Z transition of DNA. Nature 397:144–146

    Article  Google Scholar 

  15. Duckett D, Murchie A, Diekmann S, Kitzing E, Kemper B, Lilley D (1988) The structure of the holliday junction, and its resolution. Cell 55(1):79–89

    Article  Google Scholar 

  16. Yang X, Vologodskii A, Liu B, Kemper B, Seeman N (1998) Torsional control of double-stranded DNA branch migration. Biopolymers 45(1):69–83

    Article  Google Scholar 

  17. Gehring K, Leroy J-L, Gueron M, Tetrameric A (1993) DNA structure with protonated cytosine-cytosine base pairs. Nature 363(6429):561–565

    Article  Google Scholar 

  18. Liu D, Balasubramanian S, Proton-Fuelled A (2003) DNA nanomachine. Angew Chem Int Ed 42(46):5734–5736

    Article  Google Scholar 

  19. Liu D, Bruckbauer A, Abell C, Balasubramanian S, Kang D-J, Klenerman D, Zhou D, Reversible A (2006) pH-driven DNA nanoswitch array. J Am Chem Soc 128(6):2067–2071

    Article  Google Scholar 

  20. Liu H, Xu Y, Li F, Yang Y, Wang W, Song Y, Liu D (2007) Light-driven conformational switch of i-motif DNA. Angew Chem Int Ed 46(14):2515–2517

    Article  Google Scholar 

  21. Liedl T, Simmel F (2005) Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett 5(10):1894–1898

    Article  Google Scholar 

  22. Liedl T, Olapinski M, Simmel F, Surface-Bound A, Switch DNA (2006) Driven by a chemical oscillator. Angew Chem Int Ed 45(30):5007–5010

    Article  Google Scholar 

  23. Cao Y, Jin R, Mirkin C (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    Article  Google Scholar 

  24. Sharma J, Chhabra R, Yan H, Liu Y (2007) pH-driven conformational switch of i-motif DNA for the reversible assembly of gold nanoparticles. Chem Commun 477–479

    Google Scholar 

  25. Ren X, He F, Xu Q-H (2010) Direct visualization of conformational switch of i-motif DNA with a cationic conjugated polymer. Chem Asian J 5(5):1094–1098

    Article  Google Scholar 

  26. Shu W, Liu D, Watari M, Riener C, Strunz T, Welland M, Balasubramanian S, McKendry R, Molecular DNA (2005) Motor driven micromechanical cantilever arrays. J Am Chem Soc 127(48):17054–17060

    Article  Google Scholar 

  27. Chen Y, Lee S-H, Mao C (2004) A DNA nanomachine based on a duplex-triplex transition. Angew Chem Int Ed 43(40):5335–5338

    Article  Google Scholar 

  28. Brucale M, Zuccheri G, Samori B (2005) The dynamic properties of an intramolecular transition from DNA duplex to cytosine-thymine motif triplex. Org Biomol Chem 3(4):575–577

    Article  Google Scholar 

  29. Modi S, Swetha MG, Goswami D, Gupta G, Mayor S, Krishnan Y (2009) A DNA nanomachine that maps spatial and temporal pH changes inside living cells. Nat Nanotechnol 4(5):325–330

    Article  Google Scholar 

  30. Yin P, Yan H, Daniell X, Turberfield A, Reif J, Unidirectional A, Walker DNA (2004) Moving autonomously along a linear track. Angew Chem Int Ed 116(37):5014–5019

    Article  Google Scholar 

  31. Sekiguchi H, Komiya K, Kiga D, Yamamura M (2008) A design and feasibility study of reactions comprising DNA molecular machine that walks autonomously by using a restriction enzyme. Nat Comput 7(3):303–315

    Article  MathSciNet  Google Scholar 

  32. Bath J, Green S, Turberfield A, Free-Running A, Motor DNA (2005) Powered by a nicking enzyme. Angew Chem Int Ed 44(28):4358–4361

    Article  Google Scholar 

  33. Tian Y, He Y, Chen Y, Yin P, Mao C (2005) A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew Chem Int Ed 44(28):4355–4358

    Article  Google Scholar 

  34. Chen Y, Wang M, Mao C (2004) An autonomous DNA nanomotor powered by a DNA enzyme. Angew Chem Int Ed 43(27):3554–3557

    Article  Google Scholar 

  35. Yurke B, Turberfield A, Mills A, Simmel F, Neumann J (2000) A DNA-fuelled molecular machine made of DNA. Nature 406(6796):605–608

    Article  Google Scholar 

  36. Bishop J, Klavins E (2007) An improved autonomous DNA nanomotor. Nano Lett 7(9):2574–2577

    Article  Google Scholar 

  37. Sahu S, LaBean T, Reif J (2008) A DNA nanotransport device powered by polymerase φ. Nano Lett 8(11):3870–3878

    Article  Google Scholar 

  38. Sherman W, Seeman N (2004) A precisely controlled DNA biped walking device. Nano Lett 4:1203–1207

    Article  Google Scholar 

  39. Shin J-S, Pierce N, Synthetic A (2004) DNA walker for molecular transport. J Am Chem Soc 126(35):10834–10835

    Article  Google Scholar 

  40. Tian Y, Mao C (2004) Molecular gears: a pair of DNA circles continuously rolls against each other. J Am Chem Soc 126(37):11410–11411

    Article  Google Scholar 

  41. Yin P, Choi H, Calvert C, Pierce N (2008) Programming biomolecular self-assembly pathways. Nature 451(7176):318–322

    Article  Google Scholar 

  42. Green S, Bath J, Turberfield A (2008) Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys Rev Lett 101(23):238101

    Article  Google Scholar 

  43. Venkataraman S, Dirks R, Rothemund P, Winfree E, Pierce N (2007) An autonomous polymerization motor powered by DNA hybridization. Nat Nanotechnol 2:490–494

    Article  Google Scholar 

  44. Reif J, Sahu S (2009) Autonomous programmable DNA nanorobotic devices using dnazymes. Theor Comput Sci 410:1428–1439

    Article  MathSciNet  MATH  Google Scholar 

  45. Pei R, Taylor S, Stefanovic D, Rudchenko S, Mitchell T, Stojanovic M (2006) Behavior of polycatalytic assemblies in a substrate-displaying matrix. J Am Chem Soc 128(39):12693–12699

    Article  Google Scholar 

  46. Lund K, Manzo A, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M, Walter N, Winfree E, Yan H (2010) Molecular robots guided by prescriptive landscapes. Nature 465(7295):206–210

    Article  Google Scholar 

  47. Gu H, Chao J, Xiao S-J, Seeman N, Proximity-based A (2010) Programmable DNA nanoscale assembly line. Nature 465(7295):202–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Chandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chandran, H., Gopalkrishnan, N., Reif, J. (2013). DNA Nanorobotics. In: Mavroidis, C., Ferreira, A. (eds) Nanorobotics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2119-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-2119-1_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-2118-4

  • Online ISBN: 978-1-4614-2119-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics