Sol-Gel Processing for Conventional and Alternative Energy pp 315-340

Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)

Nanoscale Oxide Thermoelectrics

Chapter

Abstract

The renaissance of thermoelectrics has been bolstered by the contemporary call for energy harvesting technologies. The potential use of thermoelectrics for direct conversion of waste heat into electricity is gaining momentum and oxides are envisaged as the most promising materials for high temperature applications. Nevertheless, prior to the commercial deploying of this technology, the efficiency of thermoelectric oxides needs to be perfected. Inevitably, the large thermal conductivity of oxides needs to be reduced. Several strategies are currently being explored, including sol-gel processing of oxide thermoelectrics. The higher density of interfaces in nanoceramics fabricated from sol-gel processed powders is regarded as an effective approach to enhance phonon scattering, and thereby reduce thermal conductivity. In this chapter, the fundamentals of thermoelectrics are presented alongside the most promising oxides for the fabrication of thermoelectric modules for energy harvesting. Potential benefits of using sol-gel processed powders are highlighted and the current state-of-art all-oxide thermoelectric modules are presented. Finally, we proposed the exploration of hexagonal perovskites.

Keywords

Aluminum-doped zinc oxide Bismuth telluride Calcium cobalt oxide Clathrates Energy harvesting Lead telluride Phonon propagation Piezoelectric Seebeck coefficient Skutterudites Sodium cobalt oxide Strontium titanate Waste heat Zinc oxide ZT value 

References

  1. 1.
    Alphabeth Energy, News Release (2010) Alphabet energy awarded government grants totaling $320,000. www.alphabethenergy.com
  2. 2.
    Amerigon Incorporated, News Release (2009) Amerigon subsidiary BSST to test thermoelectric waste heat recovery system on BMW group and Ford vehicles. www.amerigon.com
  3. 3.
    SDK, News release (2010) SDK and PLANTEC test thermoelectric power generation modules in waste incinerator. http://www.showa-denko.com
  4. 4.
    Lemon S (2008) Murata working on turning laptop heat into power, IDG News ServiceGoogle Scholar
  5. 5.
    Koumoto K, Wang Y, Zhang R, Kosuga A, Funahashi R (2011) Oxide thermoelectric materials: a nanostructuring approach. Ann Rev Mater Res 40:363–394. doi:10.1146/annurev-matsci-070909-104521 CrossRefGoogle Scholar
  6. 6.
    Vineis CJ, Ali Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoeletrics: big efficiency gains from small features. Adv Mater 22:3970–3980. doi:10.1002/adma.201000839 CrossRefGoogle Scholar
  7. 7.
    Newnham R (2004) Properties of materials: anisotropy, symmetry and structure. Oxford University Press, New YorkGoogle Scholar
  8. 8.
    Kittel C (1995) Introduction to solid state physics, 7th edn. Wiley, New YorkGoogle Scholar
  9. 9.
    Ohtaki M, Tsubota T, Eguchi K, Arai H (1996) High-temperature thermoelectric proper-ties of (Zn1-xAlx)O. J Appl Phys 79:1816–1818CrossRefGoogle Scholar
  10. 10.
    Ohtaki M, Araki K, Yamamoto K (2009) High thermoelectric performance of dually doped ZnO ceramics. J Electr Mater 38:1234–1238. doi:10.1007/s11664-009-0816-1 CrossRefGoogle Scholar
  11. 11.
    Hopper EM, Zhu Q, Song JH, Peng H, Freeman AJ, Mason TO (2011) Electronic and thermoelectric analysis of phases in the In2O3(ZnO)k system. J Appl Phys 109:013713–013714. doi:10.1063/1.3530733 CrossRefGoogle Scholar
  12. 12.
    Kinemuchi Y, Mikami M, Kobayashi K, Watari K, Hotta Y (2010) Thermoelectric properties of nanograined ZnO. J Elec Mat 39:2059–2063. doi:10.1007/s11664-009-1009-7 CrossRefGoogle Scholar
  13. 13.
    Lee S, Yang G, Wilke RHT, Trolier-McKinstry S, Randall CA (2009) Thermopower in highly reduced n-type ferroelectric and related perovskite oxides and the role of heterogeneous non-stoichiometry. Phys Rev B 79:134110CrossRefGoogle Scholar
  14. 14.
    Lee KH, Kim SW, Ohta H, Koumoto K (2006) Ruddlesden-Popper phases as thermoelectric oxides: Nb-doped SrO(SrTiO3)n (n = 1, 2). J Appl Phys 100:063717CrossRefGoogle Scholar
  15. 15.
    Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56:12685–12687. doi:0163-1829/97/56~20/12685 CrossRefGoogle Scholar
  16. 16.
    Cai KF, Müller E, Drašar C, Mrotzek A (2003) Preparation and thermoelectric properties of Al-doped ZnO ceramics. Mat Sci Eng 104:45–48. doi:10.1016/S0921-5107(03)00280-0 CrossRefGoogle Scholar
  17. 17.
    Shang PP, Zhang BP, Li JF, Ma N (2010) Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol-gel process and spark plasma sintering. Solid State Sci 12:1341–1346. doi:10.1016/j.solidstatesciences.2010.05.005 CrossRefGoogle Scholar
  18. 18.
    Liu CJ, Liao JY, Wu TW, Jen BY (2004) Preparation and transport properties of aqueous sol-gel synthesized NaCo2O4-δ. J Mater Sci 39:4569–4573CrossRefGoogle Scholar
  19. 19.
    Zhang YF, Lu QM, Zhang QY (2006) Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater Lett 60:2443–2446. doi:10.1016/j.matlet.2006.01.013 CrossRefGoogle Scholar
  20. 20.
    Nan J, Wu J, Deng Y, Nan CW (2003) Synthesis and thermoelectric properties of (NaxCa1-x)3Co4O9 ceramics. J Eur Ceram Soc 23:859–863CrossRefGoogle Scholar
  21. 21.
    Xu J, Wei C, Jia K (2010) Thermoelectric performance of textured Ca3-xYbxCo4O9-δ ceramics. J Alloys Compd 500:227–230. doi:10.1016/j.jallcom.2010.04.014 CrossRefGoogle Scholar
  22. 22.
    Pei J, Chen G, Zhou N, Lu DQ, Xiao F (2011) High temperature transport and thermoelectric properties of Ca3-xErxCo4O9+δ. Phys B 406:571–574. doi:10.1016/j.physb.2010.11.043 CrossRefGoogle Scholar
  23. 23.
    Matsubara I, Funahashi T, Takeuchi T, Sodeoka S, Shimizu T and Ueno K Fabrication of an all-oxide thermoelectric power generator. Appl Phys Lett 78:3627–3629. doi: 0003-6951/2001/78(23)/3627/3Google Scholar
  24. 24.
    Reddy ES, Noudem JG, Hebert S, Goupil C (2005) Fabrication and properties of four-leg ox-ide thermoelectric modules. J Phys D Appl Phys 38:3751–3755. doi:10.1088/0022-3727/38/19/026 CrossRefGoogle Scholar
  25. 25.
    Choi SM, Lee KH, Lim CH, Seo WS (2011) Oxide-based thermoelectric power generation module using p-type Ca3Co4O9 and n-type (ZnO)7In2O3 legs. Energy Convers Manag 52:335–339. doi:10.1016/j.enconman.2010.07.005 CrossRefGoogle Scholar
  26. 26.
    Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92:967–983. doi:10.1111/j.1551-2916.2009.02990.x CrossRefGoogle Scholar

Copyright information

© © Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Christian Doppler Laboratory for Advanced Ferroic OxidesUniversity of BirminghamBirminghamUK
  2. 2.Department of PhysicsUniversity of WarwickCoventryUK
  3. 3.Christian Doppler Laboratory for Advanced Ferroic OxidesGraz University of TechnologyGrazAustria

Personalised recommendations