1.

2.

Roscoe A. Bartlett, David M. Gay, and Eric T. Phipps, Automatic Di_erentiation of C++ Codes for Large-Scale Scienti_c Computing. In Computational Science { ICCS 2006, Vassil N. Alexandrov, Geert Dick van Albada, Peter M.A. Sloot, and Jack Dongarra (eds.), Springer, 2006, pp. 525{532.

3.

Martin Berz, Di_erential Algebraic Description of Beam Dynamics to Very High Orders, Particle Accelerators 24 (1989), p. 109.

Google Scholar4.

Martin Berz, yoko Makino, Khodr Shamseddine, Georg H. Hoffstatter, and Weishi Wan, COSY INFINITY and Its Applications in Nonlinear Dynamics, SIAM, 1996.

5.

Stephen P. Boyd and Jacob Mattingley, CVXMOD | Convex Optimization Software in Python,

http://cvxmod.net/, accessed July 2009.

6.

R. Fourer and D.M. Gay, Experience with a Primal Presolve Algorithm. In Large Scale Optimization: State of the Art, W.W. Hager, D.W. Hearn, and P.M. Pardalos (eds.), Kluwer Academic Publishers, 1994, pp. 135{154.

7.

R. Fourer, D.M. Gay, and B.W. Kernighan, A Modeling Language for Mathematical Programming, Management Science 36(5) (1990), pp. 519{554.

Google Scholar8.

Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press/Brooks/Cole Publishing Co., 2nd edition, 2003.

9.

Robert Fourer, Jun Ma, and Kipp Martin, An Open Interface for Hooking Solvers to Modeling Systems, slides for DIMACS Workshop on COIN-OR, 2006,

http://dimacs.rutgers.edu/Workshops/COIN/slides/osil.pdf.

10.

R. Fourer, C. Maheshwari, A. Neumaier, D. Orban, and H. Schichl, Convexity and Concavity Detection in Computational Graphs, manuscript, 2008, to appear in INFORMS J. Computing.

11.

Edward P. Gatzke, John E. Tolsma, and Paul I. Barton, Construction of Convex Function Relaxations Using Automated Code Generation Techniques Optimization and Engineering 3, 2002, pp. 305{326.

12.

Davd M. Gay, Automatic Di_erentiation of Nonlinear AMPL Models. In Automatic Di_erentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and G. Corliss (eds.), SIAM, 1991, pp. 61{73.

13.

Davd M. Gay, Hooking Your Solver to AMPL, AT&T Bell Laboratories, Numerical Analysis Manuscript 93–10, 1993 (revised 1997).

http://www.ampl.com/REFS/hooking2.pdf.

14.

Davd M. Gay, More AD of Nonlinear AMPL Models: Computing Hessian Information and Exploiting Partial Separability. In Computational Di_erentiation : Techniques, Applications, and Tools, Martin Berz, Christian Bischof, George Corliss and Andreas Griewank (eds.), SIAM, 1996, pp. 173{184.

15.

Davd M. Gay, Semiautomatic Di_erentiation for E_cient Gradient Computations. In Automatic Di_erentiation: Applications, Theory, and Implementations, H. Martin Bucker, George F. Corliss, Paul Hovland and Uwe Naumann and Boyana Norris (eds.), Springer, 2005, pp. 147{158.

16.

Davd M. Gay, Bounds from Slopes, report SAND-1010xxxx, to be available as

http://www.sandia.gov/~dmgay/bounds10.pdf.

17.

D.M. Gay, T. Head-Gordon, F.H. Stillinger, and M.H. Wright, An Application of Constrained Optimization in Protein Folding: The Poly-L-Alanine Hypothesis, Forefronts 8(2) (1992), pp. 4{6.

18.

Andreas Griewank, On Automatic Di_erentiation. In Mathematical Programming: Recent Developments and Applications, M. Iri and K. Tanabe (eds.), Kluwer, 1989, pp. 83{108.

19.

, Andreas Griewank, Evaluating Derivatives, SIAM, 2000.

20.

A. Griewank, D. Juedes, and J. Utke, Algorithm 755: ADOL-C: A package for the automatic di_erentiation of algorithms written in C/C++, ACM Trans. Math Software 22(2) (1996), pp. 131{167.

Google Scholar21.

R. Baker Kearfott An Overview of the GlobSol Package for Veri_ed Global Optimization, talk slides, 2002,

http://www.mat.univie.ac.at/~neum/glopt/mss/Kea02.pdf.

22.

, Padmanaban Kesavan, Russell J. Allgor, Edward P. Gatzke, and Paul I. Barton, Outer Approximation Algorithms for Separable Nonconvex Mixed- Integer Nonlinear Programs, Mathematical Programming 100(3), 2004, pp. 517{535.

Google Scholar23.

R. Krawczyk and A. Neumaier, Interval Slopes for Rational Functions and Associated Centered Forms, SIAM J. Numer. Anal. 22(3) (1985), pp. 604{616.

24.

R.E. Moore, Interval Arithmetic and Automatic Error Analysis in Digital Computing, Ph.D. dissertation, Stanford University, 1962.

Google Scholar25.

Ramon E. Moore, Methods and Applications of Interval Analysis, SIAM, 1979.

Google Scholar26.

Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud, Introduction to Interval Analysis, SIAM, 2009.

Google Scholar27.

Ivo P. Nenov, Daniel H. Fylstra, and Lubomir V. Kolev, Convexity Determination in the Microsoft Excel Solver Using Automatic Di_erentiation Techniques, extended abstract, 2004,

http://www.autodiff.org/ad04/abstracts/Nenov.pdf.

28.

Arnold Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, 1990.

29.

Dominique Orban, Dr. AMPL Web Site,

http://www.gerad.ca/~orban/drampl/
30.

accessed July 2009.

31.

Dominique Orban and Robert Fourer, Dr. AMPL, A Meta Solver for Optimization, CORS/INFORMS Joint International Meeting, 2004,

http://users.iems.northwestern.edu/~4er/SLIDES/ban0406h.pdf.

32.

33.

S.M. Rump, Expansion and Estimation of the Range of Nonlinear Functions, Mathematics of Computation 65(216) (1996), pp. 1503{1512.

34.

35.

Hermann Schichl and Arnold Neumaier, Interval Analysis on Directed Acyclic Graphs for Global Optimization Journal of Global Optimization 33(4) (2005), pp. 541{562.

Google Scholar36.

Marco Schnurr, Steigungen hoeherer Ordnung zur veri_zierten globalen Optimierung, Ph.D. dissertation, Universitat Karlsruhe, 2007.

37.

Marco Schnurr, The Automatic Computation of Second-Order Slope Tuples for Some Nonsmooth Functions, Electronic Transactions on Numerical Analysis 30 (2008), pp. 203{223.

38.

Joseph G. Young Program Analysis and Transformation in Mathematical Programming, Ph.D. dissertation, Rice University, 2008.

Google Scholar39.

Shen Zuhe and M.A. Wolfe, On Interval Enclosures Using Slope Arithmetic, Applied Mathematics and Computation 39 (1990), pp. 89{105.