Advertisement

Let the Games Evolve!

  • Moshe Sipper
Chapter
Part of the Genetic and Evolutionary Computation book series (GEVO)

Abstract

I survey my group’s results over the past six years within the game area, demonstrating continual success in evolving winning strategies for challenging games and puzzles, including: chess, backgammon, Robocode, lose checkers, simulated car racing, Rush Hour, and FreeCell.

Keywords

backgammon chess FreeCell lose checkers policy RARS Robocode Rush Hour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azaria, Yaniv and Sipper, Moshe (2005a). GP-gammon: Genetically programming backgammon players. Genetic Programming and Evolvable Machines, 6(3):283–300. Published online: 12 August 2005.Google Scholar
  2. Azaria, Yaniv and Sipper, Moshe (2005b). Using GP-gammon: Using genetic programming to evolve backgammon players. In Keijzer, Maarten et al., editors, Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 132–142, Lausanne, Switzerland. Springer.Google Scholar
  3. Baum, E. B. and Durdanovic, I. B. (2000). Evolution of cooperative problem solving in an artificial economy. Neural Computation, 12:2743–2775.CrossRefGoogle Scholar
  4. Benbassat, Amit and Sipper, Moshe (2010). Evolving lose-checkers players using genetic programming. In IEEE Conference on Computational Intelligence and Game, pages 30–37, IT University of Copenhagen, Denmark.Google Scholar
  5. Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Woodward, J. R. (2010). A classification of hyper-heuristic approaches. In Gendreau, M. and Potvin, J-Y., editors, Handbook of Meta-Heuristics 2nd Edition, pages 449–468. Springer.Google Scholar
  6. Chellapilla, K. and Fogel, D. B. (2001). Evolving an expert checkers playing program without using human expertise. IEEE Transactions on Evolutionary Computation, 5(4):422–428.CrossRefGoogle Scholar
  7. Chomsky, N. (1993). Language and Thought. Moyer Bell, Wakefield, RI.Google Scholar
  8. Elyasaf, A., Hauptman, A., and Sipper, M. (2011). GA-FreeCell: Evolving solvers for the game of FreeCell. In GECCO 2011: Proceedings of the Genetic and Evolutionary Computation Conference, New York, NY, USA. ACM. (accepted).Google Scholar
  9. Epstein, S. L. (1999). Game playing: The next moves. In Proceedings of the Sixteenth National Conference on Artificial Intelligence, pages 987–993. AAAI Press, Menlo Park, California USA.Google Scholar
  10. Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal basis for heuristic determination of minimum path cost. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107.CrossRefGoogle Scholar
  11. Hauptman, A. and Sipper, M. (2007a). Emergence of complex strategies in the evolution of chess endgame players. Advances in Complex Systems, 10(suppl. no. 1):35–59.Google Scholar
  12. Hauptman, Ami, Elyasaf, Achiya, Sipper, Moshe, and Karmon, Assaf (2009). GP-rush: using genetic programming to evolve solvers for the rush hour puzzle. In Raidl, Guenther et al., editors, GECCO ’09: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pages 955–962, Montreal. ACM.Google Scholar
  13. Hauptman, Ami and Sipper, Moshe (2005a). Analyzing the intelligence of a genetically programmed chess player. In Rothlauf, Franz, editor, Late breaking paper at Genetic andEvolutionaryComputationConference(GECCO’2005), Washington, D.C., USA.Google Scholar
  14. Hauptman, Ami and Sipper, Moshe (2005b). GP-endchess: Using genetic programming to evolve chess endgame players. InKeijzer,Maarten et al., editors, Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 120–131, Lausanne, Switzerland. Springer.Google Scholar
  15. Hauptman, Ami and Sipper, Moshe (2007b). Evolution of an efficient search algorithm for the mate-in-N problem in chess. In Ebner, Marc et al., editors, Proceedings of the 10th European Conference on Genetic Programming, volume 4445 of Lecture Notes in Computer Science, pages 78–89, Valencia, Spain. Springer.Google Scholar
  16. Hearn,R.A. (2006).Games, puzzles, and computation.PhDthesis,Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science. Heineman, G. T. (2009). Algorithm to solve FreeCell solitaire games. Blog column associated with the book “Algorithms in a Nutshell book,” by G. T. Heineman, G. Pollice, and S. Selkow, O’Reilly Media, 2008. http://broadcast.oreilly.com/2009/01/january-column-graph-algorithm.html.
  17. Helmert, M. (2003). Complexity results for standard benchmark domains in planning. Artificial Intelligence, 143(2):219–262.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Hillis, D. W. (1990). Co-evolving parasites improve simulated evolution in an optimization procedure. Physica D, 42:228–234.CrossRefGoogle Scholar
  19. Hlynka, M. and Schaeffer, J. (2006). Automatic generation of search engines. In Advances in Computer Games, pages 23–38.Google Scholar
  20. Kendall, G., Parkes, A., and Spoerer, K. (2008). A survey of NP-complete puzzles. InternationalComputerGamesAssociation Journal (ICGA), 31:13– 34.Google Scholar
  21. 36 Genetic Programming Theory and Practice IX Google Scholar
  22. Kendall,G. andWhitwell,G. (2001).An evolutionary approach for the tuning of a chess evaluation function using population dynamics. In Proceedings of the 2001 Congress on Evolutionary Computation (CEC2001), pages 995–1002. IEEE Press.Google Scholar
  23. Korf, R. E. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artificial Intelligence, 27(1):97–109.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Koza, John R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA.Google Scholar
  25. Robertson, E. andMunro, I. (1978). NP-completeness, puzzles and games. Utilas Mathematica, 13:99–116.MathSciNetGoogle Scholar
  26. Samadi,M., Felner, A., and Schaeffer, J. (2008). Learning from multiple heuristics. In Fox, Dieter and Gomes, Carla P., editors, Proceedings of the Twenty- Third AAAI Conference on Artificial Intelligence (AAAI 2008), pages 357– 362. AAAI Press.Google Scholar
  27. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3):210–229.CrossRefGoogle Scholar
  28. Schaeffer, J., Burch, N., Bjornsson, Y., Kishimoto, A.,Muller,M., Lake, R., Lu, P., and Sutphen, S. (2007). Checkers is solved. Science, 317(5844):1518– 1522.MathSciNetCrossRefGoogle Scholar
  29. Shichel, Y. and Sipper, M. (2011). GP-RARS: Evolving controllers for the Robot Auto Racing Simulator. Memetic Computing. (accepted).Google Scholar
  30. Shichel, Yehonatan, Ziserman, Eran, and Sipper, Moshe (2005). GP-robocode: Using genetic programming to evolve robocode players. In Keijzer, Maarten et al., editors, Proceedings of the 8th European Conference on Genetic Programming, volume 3447 of Lecture Notes in Computer Science, pages 143– 154, Lausanne, Switzerland. Springer.Google Scholar
  31. Sipper, Moshe, Azaria, Yaniv, Hauptman, Ami, and Shichel, Yehonatan (2007). Designing an evolutionary strategizing machine for game playing and beyond. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 37(4):583–593.CrossRefGoogle Scholar
  32. Sipper, Moshe and Giacobini, Mario (2008). Introduction to special section on evolutionary computation in games. Genetic Programming and Evolvable Machines, 9(4):279–280.CrossRefGoogle Scholar
  33. Smith, M. and Sailer, F. (2004). Learning to beat the world Lose Checkers champion using TDLeaf(λ).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Moshe Sipper
    • 1
  1. 1.Department of Computer ScienceBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations