Atomistic Simulations of Microelectronic Materials: Prediction of Mechanical, Thermal, and Electrical Properties

  • V. Eyert
  • A. Mavromaras
  • D. Rigby
  • W. Wolf
  • M. Christensen
  • M. Halls
  • C. Freeman
  • P. Saxe
  • E. Wimmer


The prediction of materials properties using atomic-scale simulations offers exciting and unprecedented opportunities to expand the capabilities of electronic devices, to create novel systems, and to improve their reliability. This contribution discusses the current state of atomic-scale simulations and their performance to predict mechanical, thermal, and electrical properties of microelectronic materials. Specific examples are the elastic moduli of compounds such as aluminum oxide, the strength of aluminum–silicon nitride interfaces, the coefficients of thermal expansion of bulk aluminum and silicon nitride, thermal conductivity of silicon and germanium, the prediction of the diffusion coefficient of hydrogen in metallic nickel, the calculation of dielectric properties of zinc oxide, and optical properties of silicon carbide and diamond. The final example addresses the control of the effective work function in the HfO2/TiN interface of a CMOS gate stack. For an increasing number of materials properties, computed values achieve a level of accuracy which is similar to that of measured data. This enables the generation of consistent datasets of materials properties as basis for the design and optimization of materials in microelectronic devices. The insight and understanding gained by these simulations sets the stage for the development of innovative materials concepts, for example in the use of nanostructures and materials such as graphene.



The authors are indebted to many Materials Design partners for vital and stimulating discussions leading to the work summarized here. In particular the contributions of Dr. Jim Chambers, Dr. Hiro Niimi, and Judy Shaw at Texas Instruments, Prof. Jürgen Hafner and Prof. Georg Kresse at the University of Vienna, and Prof. Chris Hinkle at the University of Texas, Dallas are gratefully acknowledged.


  1. 1.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133MathSciNetCrossRefGoogle Scholar
  3. 3.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  4. 4.
    Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558CrossRefGoogle Scholar
  5. 5.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  6. 6.
    Hafner J (2008) Ab initio simulations of materials using VASP: density functional theory and beyond. J Comput Chem 29:2044CrossRefGoogle Scholar
  7. 7.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179CrossRefGoogle Scholar
  8. 8.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187CrossRefGoogle Scholar
  9. 9.
    Maple JR, Dinur U, Hagler AT (1988) Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces. Proc Natl Acad Sci 85:5350CrossRefGoogle Scholar
  10. 10.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 188:1125Google Scholar
  11. 11.
    Sun H (1998) COMPASS: an ab initio force-field optimizied for condensed-phase applications—overview with details on alkane and benzene compounds. J Phys Chem B 102:7338CrossRefGoogle Scholar
  12. 12.
    Ungerer P, Beauvais C, Delhommelle J, Boutin A, Fuchs A (2000) Optimization of the anisotropic united atoms intermolecular potential for n-alkanes. J Chem Phys 112:5499CrossRefGoogle Scholar
  13. 13.
    Jones JE (1924) On the determination of molecular fields II. From the equation of state of a gas. Proc Roy Soc 106:463CrossRefGoogle Scholar
  14. 14.
    Buckingham RA (1938) The Classical equation of state of gaseous helium, neon and argon. Proc Roy Soc London Ser A 168:264CrossRefGoogle Scholar
  15. 15.
    Stillinger FH, Weber TA (1985) Computer simulation of local order in condensed phases of silicon. Phys Rev B 31:5262CrossRefGoogle Scholar
  16. 16.
    Tersoff J (1988) New empirical approach for the structure and energy of covalent systems. Phys Rev B 37:6991CrossRefGoogle Scholar
  17. 17.
    Finnis MW (1984) A simple empirical N-body potential for transition metals. Phil Mag A 50:45CrossRefGoogle Scholar
  18. 18.
    Pettifor DG, Oleinik II (1999) Analytic bond-order potentials beyond Tersoff-Brenner. I. Theory. Phys Rev B 59:8487CrossRefGoogle Scholar
  19. 19.
    Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the accuracy of quantum mechanics without the electrons. Phys Rev Lett 104:136403CrossRefGoogle Scholar
  20. 20.
    Bicerano J (1993) Prediction of polymer properties. Marcel Dekker Inc, New YorkGoogle Scholar
  21. 21.
    Halls MD, Tasaki K (2010) High-throughput quantum chemistry and virtual screening for lithium ion battery electrolyte additives. J Power Sources 195:1472CrossRefGoogle Scholar
  22. 22.
    Goto T, Anderson OL, Ohno I, Yamamoto S (1989) Elastic constants of corundum up to 1825 K. J Geophys Res 94:7588CrossRefGoogle Scholar
  23. 23.
    Gladden JR, Maynard JD, So JH, Saxe P, Le Page Y (2004) Reconciliation of ab initio theory and experimental elastic properties of Al2O3. Appl Phys Lett 85:392CrossRefGoogle Scholar
  24. 24.
    Materials Design, Inc (2010) MedeA 2.5, Santa Fe, NM Google Scholar
  25. 25.
    Parlinski K, Li Z Q, and Kawazoe Y (1997) First-principles determination of the soft mode in cubic ZrO2. Phys Rev Lett 78:4063 and references thereinGoogle Scholar
  26. 26.
    Wimmer E, Wolf W, Sticht J, Saxe P, Geller CB, Najafabadi R, Young GA (2008) Temperature-dependent diffusion coefficients from ab initio computations: hydrogen, deuterium, and tritium in nickel. Phys Rev B 77:134305CrossRefGoogle Scholar
  27. 27.
    Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107CrossRefGoogle Scholar
  28. 28.
    Müller-Plathe F, Reith D (1999) Cause and effect reversed in non-equilibrium molecular dynamics: an easy route to transport coefficients, Comp Theor Polymer Sci 9:203CrossRefGoogle Scholar
  29. 29.
    Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1.
  30. 30.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207Google Scholar
  31. 31.
    Wrobel J, Kurzydlowski KJ, Hummer K, Kresse G, Piechota J (2009) Calculations of ZnO properties using the Heyd-Scuseria-Ernzerhof screened hybrid density functional. Phys Rev B 80:155124Google Scholar
  32. 32.
    Ashkenov N, Mbenkum BN, Bundesmann C, Riede V, Lorenz M, Spemann D, Kaidashev EM, Kasic A, Schubert M, Grundmann M, Wagner G, Neumann H, Darakchieva V, Arwin H, Monemar B (2003) Infrared dielectric functions and phonon modes of high-quality ZnO films. J. Appl. Phys. 93:126CrossRefGoogle Scholar
  33. 33.
    Lambrecht WRL, Segall B, Yoganathan M, Suttrop W, Devaty RP, Choyke WJ, Edmond JA, Powell JA, Alouani M (1994) Calculated and measured uv reflectivity of SiC polytypes. Phys Rev B 50:10722CrossRefGoogle Scholar
  34. 34.
    Hinkle CL, Galatage RV, Chapman RA, Vogel EM, Alshareef HN, Freeman C, Wimmer E, Niimi H, Li-Fatou A, Shaw JB, Chambers JJ (2010) Interfacial oxygen and nitrogen induced dipole formation and vacancy passivation for increased effective work functions in TiN/HfO2 gate stacks. Appl Phys Lett 96:103502CrossRefGoogle Scholar
  35. 35.
    Peressi M, Baroni S, Baldereschi A, Resta R (1990) Electronic structure of InP/Ga0.47In0.53As interfaces. Phys Rev B 41:12106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • V. Eyert
    • 1
    • 2
  • A. Mavromaras
    • 1
    • 2
  • D. Rigby
    • 1
    • 2
  • W. Wolf
    • 1
    • 2
  • M. Christensen
    • 1
    • 2
  • M. Halls
    • 1
    • 2
  • C. Freeman
    • 1
    • 2
  • P. Saxe
    • 1
    • 2
  • E. Wimmer
    • 1
    • 2
  1. 1.Materials Design, IncSanta FeUSA
  2. 2.Materials Design, SARLMontrougeFrance

Personalised recommendations