Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 739)


Animals can use the direction of the magnetic field as a compass and the intensity of the magnetic field as a component of the navigational ‘map’. Two fundamentally different mechanisms of magnetoreception have been discussed: (1) light-dependent reactions in specialized photopigments lead to radical pairs, with the ratio singlet/ triplet depending on the molecule’s alignment with respect to the ambient magnetic field and (2) reactions involving small crystals of magnetite, a specific iron oxide of biogen origin. The first mechanism provides birds and possibly amphibians and insects with compass information; the second, which can theoretically provide animals with information on direction and intensity, appears to mediate intensity information in birds and compass information e.g., in mammals. Little is known about the magnetoreception mechanisms in other animals.


Magnetite Particle Magnetic Compass Marine Turtle Loggerhead Turtle Homing Pigeon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker RR. Human Navigation and Magnetoreception. Manchester, New York: Manchester University Press, 1989.Google Scholar
  2. 2.
    Skiles DD. The geomagnetic field: its nature, history and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985:43–102.CrossRefGoogle Scholar
  3. 3.
    Wiltschko R, Wiltschko W. Magnetic Orientation in Animals. Berlin, Heidelberg, New York: Springer Verlag, 1995.CrossRefGoogle Scholar
  4. 4.
    Wiltschko W, Wiltschko R. Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 2005; 191:675–693.CrossRefGoogle Scholar
  5. 5.
    Kalmijn AJ. Electric and magnetic sensory world of sharks, skates and rays. In: Hodgson FS, Mathewson RF, eds. Sensory Biology of Sharks, Skates and Rays. Arlington, VA: Office Naval Res, 1978:507–528.Google Scholar
  6. 6.
    Ritz T, Adem S, Schulten K. A model for vision-based magnetoreception in birds. Biophys J 2000; 78:707–718.PubMedCrossRefGoogle Scholar
  7. 7.
    Wiltschko W, Wiltschko R. Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 1981; 291:433–434.CrossRefGoogle Scholar
  8. 8.
    Wiltschko R, Stapput K, Thalau P et al. Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 2010; 7(Focus 2):S163–S177.PubMedCrossRefGoogle Scholar
  9. 9.
    Phillips JB, Borland SC. Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt notophthalmus viridescens. Anim Behav 1992; 44:796–797.CrossRefGoogle Scholar
  10. 10.
    Phillips JB, Jorge PE, Muheim R. Light-dependent magnetic compass orientation in amphibians and insects: candidate receptors and candidate molecule mechanisms. J R Soc Interface 2010; 7(Focus 2):S241–S256.PubMedCrossRefGoogle Scholar
  11. 11.
    Phillips JB, Borland SC, Freake M et al. ‘Fixed-axis’ magnetic orientation by an amphibian: nonshoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 2002; 205:3903–3914.PubMedGoogle Scholar
  12. 12.
    Lohmann KJ, Lohmann CMF. A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 1993; 185:149–151.CrossRefGoogle Scholar
  13. 13.
    Ritz T, Thalau P, Phillips JB et al. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 2004; 429:177–180.PubMedCrossRefGoogle Scholar
  14. 14.
    Vácha M, Půžová T, Kvícalova M. Radiofrequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 2009; 212:3473–3477.PubMedCrossRefGoogle Scholar
  15. 15.
    Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 2003; 103:2203–2237.PubMedCrossRefGoogle Scholar
  16. 16.
    Liedvogel M, Mouritsen H. Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 2010; 7(Focus 2):S147–S162.PubMedCrossRefGoogle Scholar
  17. 17.
    Ritz T, Wiltschko R, Hore PJ et al. Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 2009; 96:3451–345.PubMedCrossRefGoogle Scholar
  18. 18.
    Gegear RJ, Casselman A, Waddell S et al. Cryptochrome mediates light-dependent magnetosensitiviy in Drosophila. Nature 2008; 454:1014–1019.PubMedCrossRefGoogle Scholar
  19. 19.
    Wiltschko W, Wiltschko R. Magnetoreception in birds: two receptors for two different tasks. J Ornithol 2007; 148(Suppl 1):S61–S76.CrossRefGoogle Scholar
  20. 20.
    Phillips JB, Deutschlander ME, Freake MJ et al. The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 2001; 204:2543–2552.PubMedGoogle Scholar
  21. 21.
    Semm P, Nohr D, Demaine C et al. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol 1984;155:283–288.CrossRefGoogle Scholar
  22. 22.
    Güntürkün O. Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 1997; 116:561–566.PubMedCrossRefGoogle Scholar
  23. 23.
    Zapka M, Heyers D, Hein CM et al. Visual but not trigeminal mediation of magnetic compass information in a mirgatory birds. Nature 2009; 462:1274–1277.CrossRefGoogle Scholar
  24. 24.
    Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985.Google Scholar
  25. 25.
    Blakemore RP. Magnetotactic bacteria. Science 1975; 190:377–379.PubMedCrossRefGoogle Scholar
  26. 26.
    Shcherbakov VP, Winklhofer M. The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 1999; 28:380–392.CrossRefGoogle Scholar
  27. 27.
    Walker MM, Diebel CE, Haugh CV et al. Structure and function of the vertebrte magnetic sense. Nature 1997; 390:371–376.PubMedCrossRefGoogle Scholar
  28. 28.
    Winklhofer W, Kirschvink JL. A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 2010; 7(Focus 2):S273–S289.PubMedCrossRefGoogle Scholar
  29. 29.
    Solov’yov IA, Greiner W. Theoretical analysis of an iron mineral-based magnetoreceptor model in birds. Biophys J 2007; 93:1493–1509.CrossRefGoogle Scholar
  30. 30.
    Fleissner G, Holtkamp-Rotzler E, Hanzlik M et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 2003; 458:350–360.PubMedCrossRefGoogle Scholar
  31. 31.
    Falkenberg G, Fleissner G, Schuchardt K et al. Avian magnetoreception: elaborate iron mineral containing dentrites in the upper beak seem to be a common feature of birds. PLoS One 2010; 5:e9231.PubMedCrossRefGoogle Scholar
  32. 32.
    Semm P, Beason RC. Responses to small magnetic variations by the trigeminal system of the bobolink. Brain Res Bull 1990; 25:735–740.PubMedCrossRefGoogle Scholar
  33. 33.
    Heyers D, Zapka M, Hoffmeister M et al. Magnetic field changes activate the trigeminal brainstem complex in a migratory birds. Proc Natl Acad Sci USA 2010; doi: 10.1073/pnas.0907068107.Google Scholar
  34. 34.
    Němec P, Altmann J, Marhold S et al. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 2001; 294:366–368.PubMedCrossRefGoogle Scholar
  35. 35.
    Davila AF, Fleissner G, Winklhofer M. A new model for a magnetoreceptor in homing pigeons based on interacting clusters of superparamagnetic magnetite. Phys Chem Earth 2003; 28:647–652.CrossRefGoogle Scholar
  36. 36.
    Marhold S, Burda H, Kreilos I et al. Magnetic orientation in the common mole-rat from Zambia. In: Orientation and Navigation—Birds, Humans and other Animals. Oxford: Royal Instit of Navigation 1997; 5–1–5–9.Google Scholar
  37. 37.
    Holland RA, Kirschvink JL, Doak TG et al. Bats use magnetite to detect the earth’s magnetic field. Plos One 2008; 3:e1676.PubMedCrossRefGoogle Scholar
  38. 38.
    Irwin WP, Lohmann KJ. Disruption of magnetic orientation in hatchling loggerhead turtles by pulsed magnetic fields. J Comp Physiol A 2005; 191:475–480.CrossRefGoogle Scholar
  39. 39.
    Wiltschko W, Munro U, Ford H et al. Avian orientation: the pulse effect is mediated by the magnetite receptors in the upper beak. Proc R Soc B 2009; 276:2227–2232.PubMedCrossRefGoogle Scholar
  40. 40.
    Kirschvink JL, Walker MM. Particle-size considerations for magnetite-based magnetoreceptors. In: Kirschvink JL, Jones DS, MacFadden BJ, eds. Magnetite Biomineralization and Magnetoreception in Organisms. New York, London: Plenum Press, 1985:243–256.CrossRefGoogle Scholar
  41. 41.
    Viguier C. Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philisophique de la France et de L Etranger 1882; 14:1–36.Google Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Fachbereich BiowissenschaftenJ.W. Goethe-UniversitaetFrankfurt am MainGermany

Personalised recommendations