The Emergence of the Major Histocompatilibility Complex

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 738)

Abstract

The Major Histocompatibility Complex (MHC) is a genomic region that contains genes that encode proteins involved with antigen presentation and, therefore, plays an important role in the adaptive immune system. The origin of these genes was probably an ancestral MHC that appeared before the emergence of the adaptive immune system and contained genes related to immunity. The organization of MHC genes varies in different groups of vertebrates; although, there are some characteristics that are maintained in all groups, which indicates that they confer some evolutionary advantage: Organization of the genes to form clusters and genetic polymorphisms. The study of how the MHC appeared during evolution and how it is organized in different species can help us clarify what features are essential in their participation in self-nonself recognition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tortorella D, Gewurz BE, Furman MH et al. Viral subversion of the immune system. Annu Rev Immunol 2000; 18:861–926.PubMedCrossRefGoogle Scholar
  2. 2.
    Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 2002; 20:217–251.PubMedCrossRefGoogle Scholar
  3. 3.
    Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23:225–274.PubMedCrossRefGoogle Scholar
  4. 4.
    Martinez-Borra J, Khakoo SI. Speed and selection in the evolution of killer-cell immunoglobulin-like receptors. Int J Immunogenet 2008; 35:89–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Rhodes DA, Trowsdale J. Genetics and molecular genetics of the MHC. Rev Immunogenet 1999; 1:21–31.PubMedGoogle Scholar
  6. 6.
    Klein J, Sato A. The HLA system. N Engl J Med 2000; 343;702–709.PubMedCrossRefGoogle Scholar
  7. 7.
    Little A-M, Parham P. Polymorphism and evolution of HLA class I and II genes and molecules. Rev Immunol 1999; 1:105–123.Google Scholar
  8. 8.
    Takami K, Zaleska-Rutczynska Z, Figueroa F et al. Linkage of LMP, TAP and RING3 with MHC class I rather than class II genes in the zebra fish. J Immunol 1997; 159:6052–6060.PubMedGoogle Scholar
  9. 9.
    Salter-Cid L, Kasahara M, Flajnik MF. Hsp70 genes are linked to the Xenopus major histocompatibility complex. Immunogenetics 1994; 39:1–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Joly E, Deverson EV, Coadwell JW et al. The distribution of Tap2 alleles among laboratory rat RT1 haplotypes. Immunogenetics 1994; 40:45–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Danchin EGJ, Pontarotti P. Towards the reconstruction of the bilaterian ancestral preMHC region. Trends Genet 2004; 20:587–591.PubMedCrossRefGoogle Scholar
  12. 12.
    Castro LFC, Furlong RF, Holland PWH. An antecedent of the MHC-linked genomic region in amphioxus. Immunogenetics 2004; 55:782–784.PubMedCrossRefGoogle Scholar
  13. 13.
    Kasahara M, Hayashi M, Tanaka K et al. Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc Natl Acad Sci USA 1996; 93:9096–9101.PubMedCrossRefGoogle Scholar
  14. 14.
    Katsanis N, Fitzgibbon J, Fisher EM. Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 1996; 35:101–108.PubMedCrossRefGoogle Scholar
  15. 15.
    Fitch WM. Homology a personal view on some of the problems. Trends Genet 2000; 16:227–231.PubMedCrossRefGoogle Scholar
  16. 16.
    Flajnik MF, Kasahara M. Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 2001; 15:351–362.PubMedCrossRefGoogle Scholar
  17. 17.
    Horton R, Wilming L, Rand V et al. Gene map of the extended Human MHC. Nat Rev Genet 2004; 5:889–899.PubMedCrossRefGoogle Scholar
  18. 18.
    Abi-Rached L, Gille A, Shiina T et al. Evidence of en bloc duplication in vertebrate genomes. Nat Genet 2002; 21:100–105.CrossRefGoogle Scholar
  19. 19.
    Ohno S. Evolution by Gene Duplication. New York: Springer-Verlag; 1970.Google Scholar
  20. 20.
    Kasahara M. The 2R hypothesis: an update. Curr Opin Immunol 2007; 19:547–552.PubMedCrossRefGoogle Scholar
  21. 21.
    McLysaght A, Hokamp K, Wolfe KH. Extensive genomic duplication during early chordate evolution. Nat Genet 2002; 31:200–204.PubMedCrossRefGoogle Scholar
  22. 22.
    Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 2005; 3:e314.PubMedCrossRefGoogle Scholar
  23. 23.
    Vienne A, Shiina T, Abi-Rached L et al. Evolution of the proto-MHC ancestral region: more evidence for the plesiomorphic organisation of human chromosome 9q34 region. Immunogenetics 2003; 55:429–436.PubMedCrossRefGoogle Scholar
  24. 24.
    Danchin E, Vitiello V, Vienne A et al. The major histocompatibility complex origin. Immunol Rev 2004; 198:216–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Azumi K, De Santis R, De Tomaso A et al. Genomic analysis of immunity in a urochordate and the emergence of the vertebrate immune system: “waiting for Godot”. Immunogenetics 2003; 55:570–581.PubMedCrossRefGoogle Scholar
  26. 26.
    Cannon JP, Haire RN, Litman GW. Identification of diversified genes that contain immunoglobulin-like variable regions in a protochordate. Nat Genet 2002; 3:1200–1207.CrossRefGoogle Scholar
  27. 27.
    Agrawal A, Eastman QM, Schatz DG. Implications of transposition mediated by V(D)j-recombination proteins RAG1 and RAG2 for origins of antigen-specific immunity. Nature 1998; 94:744–751.Google Scholar
  28. 28.
    Ohta Y, McKinney EC, Criscitiello MF et al. Proteasome, transporter associated with antigen processing and class I genes in the nurse Shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 2002; 168:771–781.PubMedGoogle Scholar
  29. 29.
    Shum BP, Guethlein L, Flodin LR et al. Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 2001; 166:3297–3308.PubMedGoogle Scholar
  30. 30.
    Harstad H, Lukacs MF, Bakke HG et al. Multiple expressed MHC class II loci in salmonids; details of one nonclassical region in Atlantic salmon (Salmo salar). BMC Genomics 2008; 9:193.PubMedCrossRefGoogle Scholar
  31. 31.
    Hansen JD, Strassburger P, Thorgaard GH et al. Expression, linkage and polymorphims of MHC-related genes in rainbow trout, Oncorhynchus mykiss. J Immunol 1999; 774–786.Google Scholar
  32. 32.
    Clark MS, Pontarotti P, Gilles A et al. Identification and characterization of a beta proteasome subunit cluster in Japanese puffer fish (Fugu rubripes). J Immunol 2000; 165:4446–4452.PubMedGoogle Scholar
  33. 33.
    Michalova V, Murray BW, Sültmann H et al. A conting map of the MHC class I genomic region in the Zebra fish reveal ancient synteny. J Immunol 2000; 164:5296–5305.PubMedGoogle Scholar
  34. 34.
    Sültmann H, Murray BW, Klein J. Identification of seven genes in the major histocompatibility complex class I region of the zebra fish. Scand J Immunol 2000; 51:577–585.PubMedCrossRefGoogle Scholar
  35. 35.
    Kuroda N, Figueroa F, O’hUigin C et al. Evidence that the separation of MHC class II from class I loci in the zebra fish, Dario rerio, occurred by translocation. Immunogenetics 2002; 54:418–430.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaufman J, Milne S, Göbel TWF et al. The chicken B locus is a minimal essential major histocompatibility complex. Nature 1999; 401:923–925.PubMedCrossRefGoogle Scholar
  37. 37.
    Kaufman J. Co-evolving in MHC haplotypes: the “rule” for nonmammalian vertebrates? Immunogenetics 1999; 50:228–236.PubMedCrossRefGoogle Scholar
  38. 38.
    Westerdahl H, Wittzell H, von Shantz T. Polymorphism and transcription of MHC class I genes in passerine bird, the great reed warbler. Immunogenetics 1999; 49:158–170.PubMedCrossRefGoogle Scholar
  39. 39.
    Shiina T, Shimizu S, Hosomichi K et al. Comparative genomic analysis of two avian (quail and chicken) MHC region. J Immunol 2004; 172:6751–6763.PubMedGoogle Scholar
  40. 40.
    Kelley J, Walter L, Trowsdales J. Comparative genomics of major histocompatibility complexes. Immunogenetics 2005; 56:683–695.PubMedCrossRefGoogle Scholar
  41. 41.
    Kumanovics A, Takada T, Lindahl KF. Genomic organization of the mammalian MHC. Annu Rev Immunol 2003; 21:629–657.PubMedCrossRefGoogle Scholar
  42. 42.
    A madou C. Evolution of the MHC class I region: the framework hypothesis. Immunogenetics 1999; 49:362–367.PubMedCrossRefGoogle Scholar
  43. 43.
    Adams EJ, Parham P. Species-specific evolution of MHC class I genes in the higher primates. Immunol Rev 2001; 183:41–64.PubMedCrossRefGoogle Scholar
  44. 44.
    Lawlor DA, Warren E, Taylor P et al. Gorilla class I major histocompatibility complex alleles: comparison to human and chimpanzee class I. J Exp Med 1991; 174:1491–1509.PubMedCrossRefGoogle Scholar
  45. 45.
    McAdam SN, Boyson JE, Liu X et al. Chimpanzee MHC class I A locus alleles are related to only one of the six families of human A locus alleles. J Immunol 1995; 154:6421–6429.PubMedGoogle Scholar
  46. 46.
    Chen ZW, McAdam SN, Hughes AL et al. Molecular cloning of orangutan and gibbon MHC class I cDNA. The HLA-A and-B loci diverged over 30 million years ago. J Immunol 1992; 148:2547–2554.PubMedGoogle Scholar
  47. 47.
    Boyson JE, Shufflebotham C, Cadavid LF et al. The MHC class I genes of the rhesus monkey. Different evolutionary histories of MHC class I and II genes in primates. J Immunol 1996; 156:4656–4665.PubMedGoogle Scholar
  48. 48.
    Fukami-Kobayashi K, Shiina T, Anzai T et al. Genomic evolution of MHC class I region in primates. Proc Natl Acad USA 2005; 102:9230–9234.CrossRefGoogle Scholar
  49. 49.
    Adams EJ, Thomson G, Parham P. Evidence for an HLA-C-like locus in the orangutan Pongo pygmaeus. Immunogenetics 1999; 49:865–871.PubMedCrossRefGoogle Scholar
  50. 50.
    Gyllenstein UB, Erlich HA. Ancient roots for polymorphism at the HLA-DQ alpha locus in primates. Proc Natl Acad Sci USA 1989; 86:9986–9990.CrossRefGoogle Scholar
  51. 51.
    Gyllenstein UB, Lashkari D, Erlich HA. Allelic diversification at the class II DQB locus of the mammalian major histocompatibility complex. Proc Natl Acad Sci USA 1990; 87:1835–1839.CrossRefGoogle Scholar
  52. 52.
    Grahovac B, Schöbach C, Brändle U et al. Conservative evolution of the MHC-DP region in anthropoid primates. Hum Immunol 1993; 37:75–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Trowsdale J, Barten R, Haude A et al. The genomic context of natural killer receptor extended gene families. Immunol Rev 2001; 181:20–38.PubMedCrossRefGoogle Scholar
  54. 54.
    Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 2001; 15:363–374.PubMedCrossRefGoogle Scholar
  55. 55.
    Wilson MJ, Torkar M, Haude A et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA 2000; 97:4778–4783.PubMedCrossRefGoogle Scholar
  56. 56.
    Bashirova AA, Martin MP, McVicar DW et al. The killer immunoglobulin-like receptor gene cluster: tuning the genome for defense. Annu Rev Genom Human Genet 2006; 7:277–300.CrossRefGoogle Scholar
  57. 57.
    Sambrook JG, Bashirova A, Andersen H et al. Identification of the ancestral killer immunoglobulin-like receptor gene in primates. BMC Genomics 2006; 7:209.PubMedCrossRefGoogle Scholar
  58. 58.
    Guethlein LA, Older Aguilar AM, Abi-Rached L et al. Evolution of killer cell Ig-like receptor (KIR) genes: definition of an orangutan KIR haplotype reveals expansion of lineage III KIR associated with the emergence of MHC-C. J Immunol 2007; 179:491–504.PubMedGoogle Scholar
  59. 59.
    Hershberger KL, Shyam R, Miura A et al. Diversity of the killer cell Ig-like receptors of rhesus monkeys. J Immunol 2001; 166:4380–4390.PubMedGoogle Scholar
  60. 60.
    LaBonte ML, Hershberger KL, Korber B et al. The KIR and CD94/NKG2 families of molecules in the rhesus monkey. Immunol Rev 2001; 183:25–40.PubMedCrossRefGoogle Scholar
  61. 61.
    Guethlein LA, Flodin LR, Adams EJ et al. NK cell receptors of the orangutan (Pongo pygmaeus): a pivotal species for tracking the co-evolution of killer cell Ig-like receptors with MHC-C. J Immunol 2002; 169:220–229.PubMedGoogle Scholar
  62. 62.
    Khakoo SI, Rajalingam R, Shum BP et al. Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 2000; 12:687–689.PubMedCrossRefGoogle Scholar
  63. 63.
    Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet 2010; 11:31–46.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  1. 1.Immunology DepartmentHospital Universitario Central de AsturiasOviedoSpain
  2. 2.Fundación Renal „Iñigo Álvarez de Toledo“MadridSpain

Personalised recommendations