Advertisement

Tumor Dormancy, Oncogene Addiction, Cellular Senescence, and Self-Renewal Programs

  • David I. Bellovin
  • Bikul Das
  • Dean W. FelsherEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 734)

Abstract

Cancers are frequently addicted to initiating oncogenes that elicit aberrant cellular proliferation, self-renewal, and apoptosis. Restoration of oncogenes to normal physiologic regulation can elicit dramatic reversal of the neoplastic phenotype, including reduced proliferation and increased apoptosis of tumor cells (Science 297(5578):63–64, 2002). In some cases, oncogene inactivation is associated with compete elimination of a tumor. However, in other cases, oncogene inactivation induces a conversion of tumor cells to a dormant state that is associated with cellular differentiation and/or loss of the ability to self-replicate. Importantly, this dormant state is reversible, with tumor cells regaining the ability to self-renew upon oncogene reactivation. Thus, understanding the mechanism of oncogene inactivation-induced dormancy may be crucial for predicting therapeutic outcome of targeted therapy. One important mechanistic insight into tumor dormancy is that oncogene addiction might involve regulation of a decision between self-renewal and cellular senescence. Recent evidence suggests that this decision is regulated by multiple mechanisms that include tumor cell-intrinsic, cell-autonomous mechanisms and host-dependent, tumor cell-non-autonomous programs (Mol Cell 4(2):199–207, 1999; Science 297(5578):102–104, 2002; Nature 431(7012):1112–1117, 2004; Proc Natl Acad Sci U S A 104(32):13028–13033, 2007). In particular, the tumor microenvironment, which is known to be critical during tumor initiation (Cancer Cell 7(5):411–423, 2005; J Clin Invest 121(6):2436–2446, 2011), prevention (Nature 410(6832):1107–1111, 2001), and progression (Cytokine Growth Factor Rev 21(1):3–10, 2010), also appears to dictate when oncogene inactivation elicits the permanent loss of self-renewal through induction of cellular senescence (Nat Rev Clin Oncol 8(3):151–160, 2011; Science 313(5795):1960–1964, 2006; N Engl J Med 351(21):2159–21569, 2004). Thus, oncogene addiction may be best modeled as a consequence of the interplay amongst cell-autonomous and host-dependent programs that define when a therapy will result in tumor dormancy.

Keywords

Tumor Microenvironment Minimal Residual Disease Cellular Senescence Immune Effector Tumor Dormancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge current members of the Felsher laboratory for critical discussion and previous members who have contributed to characterizing various models of oncogene addiction.

References

  1. 1.
    Weinstein IB (2002) Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297(5578):63–64PubMedCrossRefGoogle Scholar
  2. 2.
    Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4(2):199–207PubMedCrossRefGoogle Scholar
  3. 3.
    Jain M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297(5578):102–104PubMedCrossRefGoogle Scholar
  4. 4.
    Shachaf CM et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431(7012):1112–1117PubMedCrossRefGoogle Scholar
  5. 5.
    Wu CH et al (2007) Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc Natl Acad Sci U S A 104(32):13028–13033PubMedCrossRefGoogle Scholar
  6. 6.
    de Visser KE, Korets LV, Coussens LM (2005) De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7(5):411–423PubMedCrossRefGoogle Scholar
  7. 7.
    Dougan M et al (2011) A dual role for the immune response in a mouse model of inflammation-associated lung cancer. J Clin Invest 121(6):2436–2446PubMedCrossRefGoogle Scholar
  8. 8.
    Shankaran V et al (2001) IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410(6832):1107–1111PubMedCrossRefGoogle Scholar
  9. 9.
    Ruffell B et al (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21(1):3–10PubMedCrossRefGoogle Scholar
  10. 10.
    Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8(3):151–160PubMedCrossRefGoogle Scholar
  11. 11.
    Galon J et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964PubMedCrossRefGoogle Scholar
  12. 12.
    Dave SS et al (2004) Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351(21):2159–2169PubMedCrossRefGoogle Scholar
  13. 13.
    Felsher DW (2003) Cancer revoked: oncogenes as therapeutic targets. Nat Rev Cancer 3(5):375–380PubMedCrossRefGoogle Scholar
  14. 14.
    Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68(9):3077–3080; discussion 3080Google Scholar
  15. 15.
    Sharma SV, Settleman J (2007) Oncogene addiction: setting the stage for molecularly targeted cancer therapy. Genes Dev 21(24):3214–3231PubMedCrossRefGoogle Scholar
  16. 16.
    Huettner CS et al (2000) Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nat Genet 24(1):57–60PubMedCrossRefGoogle Scholar
  17. 17.
    Chin L et al (1999) Essential role for oncogenic Ras in tumour maintenance. Nature 400(6743):468–472PubMedCrossRefGoogle Scholar
  18. 18.
    Hoeflich KP et al (2006) Oncogenic BRAF is required for tumor growth and maintenance in melanoma models. Cancer Res 66(2):999–1006PubMedCrossRefGoogle Scholar
  19. 19.
    Boxer RB et al (2004) Lack of sustained regression of c-MYC-induced mammary adenocarcinomas following brief or prolonged MYC inactivation. Cancer Cell 6(6):577–586PubMedCrossRefGoogle Scholar
  20. 20.
    Giuriato S et al (2006) Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci USA 103(44): 16266–16271PubMedCrossRefGoogle Scholar
  21. 21.
    Shchors K et al (2006) The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes Dev 20(18):2527–2538PubMedCrossRefGoogle Scholar
  22. 22.
    Tran PT et al (2008) Combined inactivation of MYC and K-Ras oncogenes reverses tumorigenesis in lung adenocarcinomas and lymphomas. PLoS One 3(5):e2125PubMedCrossRefGoogle Scholar
  23. 23.
    Hait WN, Hambley TW (2009) Targeted cancer therapeutics. Cancer Res 69(4):1263–1267; discussion 1267Google Scholar
  24. 24.
    Sawyers C (2004) Targeted cancer therapy. Nature 432(7015):294–297PubMedCrossRefGoogle Scholar
  25. 25.
    Druker BJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344(14):1031–1037PubMedCrossRefGoogle Scholar
  26. 26.
    Hudis CA (2007) Trastuzumab—mechanism of action and use in clinical practice. N Engl J Med 357(1):39–51PubMedCrossRefGoogle Scholar
  27. 27.
    Chapman PB et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516PubMedCrossRefGoogle Scholar
  28. 28.
    Cataldo VD et al (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 364(10):947–955PubMedCrossRefGoogle Scholar
  29. 29.
    Felsher DW (2004) Reversibility of oncogene-induced cancer. Curr Opin Genet Dev 14(1):37–42PubMedCrossRefGoogle Scholar
  30. 30.
    Sharma SV, Settleman J (2006) Oncogenic shock: turning an activated kinase against the tumor cell. Cell Cycle 5(24):2878–2880PubMedCrossRefGoogle Scholar
  31. 31.
    Kaelin WG Jr (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698PubMedCrossRefGoogle Scholar
  32. 32.
    Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7(2):139–147PubMedCrossRefGoogle Scholar
  33. 33.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  34. 34.
    Coussens LM et al (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103(3):481–490PubMedCrossRefGoogle Scholar
  35. 35.
    Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1(1):46–54PubMedCrossRefGoogle Scholar
  36. 36.
    Choi PS et al (2011) Lymphomas that recur after MYC suppression continue to exhibit oncogene addiction. Proc Natl Acad Sci U S A 108(42):17432–17437PubMedCrossRefGoogle Scholar
  37. 37.
    Gorre ME et al (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880PubMedCrossRefGoogle Scholar
  38. 38.
    Pao W et al (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1):e17PubMedCrossRefGoogle Scholar
  39. 39.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7(11):834–846PubMedCrossRefGoogle Scholar
  40. 40.
    Felsher DW (2010) MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes Cancer 1(6):597–604PubMedCrossRefGoogle Scholar
  41. 41.
    Nardella C et al (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11(7):503–511PubMedCrossRefGoogle Scholar
  42. 42.
    Felsher DW (2008) Reversing cancer from inside and out: oncogene addiction, cellular senescence, and the angiogenic switch. Lymphat Res Biol 6(3–4):149–154PubMedCrossRefGoogle Scholar
  43. 43.
    Felsher DW (2008) Tumor dormancy and oncogene addiction. APMIS 116(7–8):629–637PubMedCrossRefGoogle Scholar
  44. 44.
    Bishop JM (1991) Molecular themes in oncogenesis. Cell 64(2):235–248PubMedCrossRefGoogle Scholar
  45. 45.
    Reya T et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111PubMedCrossRefGoogle Scholar
  46. 46.
    Dick JE (2008) Stem cell concepts renew cancer research. Blood 112(13):4793–4807PubMedCrossRefGoogle Scholar
  47. 47.
    Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501PubMedCrossRefGoogle Scholar
  48. 48.
    Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28PubMedCrossRefGoogle Scholar
  49. 49.
    Nguyen LV et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143PubMedGoogle Scholar
  50. 50.
    Das B et al (2009) The idea and evidence for the tumor stemness switch. In: Rajasekhar V, Vemuri M (eds) Regulatory networks in stem cells. Humana Press, New York, pp 473–487CrossRefGoogle Scholar
  51. 51.
    Zheng H et al (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437PubMedCrossRefGoogle Scholar
  52. 52.
    Wang J et al (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3(11):e3769PubMedCrossRefGoogle Scholar
  53. 53.
    Marquardt JU et al (2011) Human hepatic cancer stem cells are characterized by common stemness traits and diverse oncogenic pathways. Hepatology 54(3):1031–1042PubMedCrossRefGoogle Scholar
  54. 54.
    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621PubMedCrossRefGoogle Scholar
  55. 55.
    Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636PubMedCrossRefGoogle Scholar
  56. 56.
    Lundblad V, Szostak JW (1989) A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57(4):633–643PubMedCrossRefGoogle Scholar
  57. 57.
    Yu GL et al (1990) In vivo alteration of telomere sequences and senescence caused by mutated tetrahymena telomerase RNAs. Nature 344(6262):126–132PubMedCrossRefGoogle Scholar
  58. 58.
    Chen Q, Ames BN (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91(10):4130–4134PubMedCrossRefGoogle Scholar
  59. 59.
    Di Leonardo A et al (1994) DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev 8(21):2540–2551PubMedCrossRefGoogle Scholar
  60. 60.
    Schmitt CA et al (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109(3):335–346PubMedCrossRefGoogle Scholar
  61. 61.
    Chang BD et al (1999) A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59(15):3761–3767PubMedGoogle Scholar
  62. 62.
    Michishita E et al (1999) 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J Biochem 126(6):1052–1059PubMedCrossRefGoogle Scholar
  63. 63.
    O’Brien W, Stenman G, Sager R (1986) Suppression of tumor growth by senescence in virally transformed human fibroblasts. Proc Natl Acad Sci U S A 83(22):8659–8663PubMedCrossRefGoogle Scholar
  64. 64.
    Serrano M et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602PubMedCrossRefGoogle Scholar
  65. 65.
    Zhu J et al (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12(19):2997–3007PubMedCrossRefGoogle Scholar
  66. 66.
    Braig M et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665PubMedCrossRefGoogle Scholar
  67. 67.
    Dimri GP et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367PubMedCrossRefGoogle Scholar
  68. 68.
    Narita M et al (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716PubMedCrossRefGoogle Scholar
  69. 69.
    Collado M et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642PubMedCrossRefGoogle Scholar
  70. 70.
    Chan HM et al (2005) The p400 E1A-associated protein is a novel component of the p53 –>  p21 senescence pathway. Genes Dev 19(2):196–201PubMedCrossRefGoogle Scholar
  71. 71.
    Chen Z et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730PubMedCrossRefGoogle Scholar
  72. 72.
    van Riggelen J et al (2010) The interaction between Myc and Miz1 is required to antagonize TGFbeta-dependent autocrine signaling during lymphoma formation and maintenance. Genes Dev 24(12):1281–1294PubMedCrossRefGoogle Scholar
  73. 73.
    Reimann M et al (2010) Tumor stroma-derived TGF-beta limits Myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17(3):262–272PubMedCrossRefGoogle Scholar
  74. 74.
    Zhuang D et al (2008) C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells. Oncogene 27(52):6623–6634PubMedCrossRefGoogle Scholar
  75. 75.
    Lin AW et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19):3008–3019PubMedCrossRefGoogle Scholar
  76. 76.
    Rakhra K et al (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18(5):485–498PubMedCrossRefGoogle Scholar
  77. 77.
    Xue W et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445(7128):656–660PubMedCrossRefGoogle Scholar
  78. 78.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545PubMedCrossRefGoogle Scholar
  79. 79.
    Dunn GP et al (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar
  80. 80.
    Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570PubMedCrossRefGoogle Scholar
  81. 81.
    de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37PubMedCrossRefGoogle Scholar
  82. 82.
    Andreu P et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17(2):121–134PubMedCrossRefGoogle Scholar
  83. 83.
    Girardi M et al (2004) Characterizing the protective component of the alphabeta T cell response to transplantable squamous cell carcinoma. J Invest Dermatol 122(3):699–706PubMedCrossRefGoogle Scholar
  84. 84.
    Lin EY et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193(6):727–740PubMedCrossRefGoogle Scholar
  85. 85.
    Hung K et al (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188(12):2357–2368PubMedCrossRefGoogle Scholar
  86. 86.
    Martin-Manso G et al (2008) Thrombospondin 1 promotes tumor macrophage recruitment and enhances tumor cell cytotoxicity of differentiated U937 cells. Cancer Res 68(17):7090–7099PubMedCrossRefGoogle Scholar
  87. 87.
    Zhou P et al (2010) Mature B cells are critical to T-cell-mediated tumor immunity induced by an agonist anti-GITR monoclonal antibody. J Immunother 33(8):789–797PubMedCrossRefGoogle Scholar
  88. 88.
    Wu J, Lanier LL (2003) Natural killer cells and cancer. Adv Cancer Res 90:127–156PubMedCrossRefGoogle Scholar
  89. 89.
    DeNardo DG et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102PubMedCrossRefGoogle Scholar
  90. 90.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266PubMedCrossRefGoogle Scholar
  91. 91.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867PubMedCrossRefGoogle Scholar
  92. 92.
    Greten FR et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296PubMedCrossRefGoogle Scholar
  93. 93.
    Ekbom A et al (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323(18):1228–1233PubMedCrossRefGoogle Scholar
  94. 94.
    Wakabayashi O et al (2003) CD4+ T cells in cancer stroma, not CD8+ T cells in cancer cell nests, are associated with favorable prognosis in human non-small cell lung cancers. Cancer Sci 94(11):1003–1009PubMedCrossRefGoogle Scholar
  95. 95.
    Zhang JP et al (2009) Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol 50(5):980–989PubMedCrossRefGoogle Scholar
  96. 96.
    Mantovani A et al (2008) Cancer-related inflammation. Nature 454(7203):436–444PubMedCrossRefGoogle Scholar
  97. 97.
    Zhang H et al (2003) Concordant down-regulation of proto-oncogene PML and major histocompatibility antigen HLA class I expression in high-grade prostate cancer. Cancer Immun 3:2PubMedGoogle Scholar
  98. 98.
    Zheng P et al (1998) Proto-oncogene PML controls genes devoted to MHC class I antigen presentation. Nature 396(6709):373–376PubMedCrossRefGoogle Scholar
  99. 99.
    Sumimoto H et al (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203(7):1651–1656PubMedCrossRefGoogle Scholar
  100. 100.
    Boni A et al (2010) Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 70(13):5213–5219PubMedCrossRefGoogle Scholar
  101. 101.
    Borrello MG et al (2005) Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci U S A 102(41):14825–14830PubMedCrossRefGoogle Scholar
  102. 102.
    Ancrile B, Lim KH, Counter CM (2007) Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev 21(14):1714–1719PubMedCrossRefGoogle Scholar
  103. 103.
    Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell 6(5):447–458PubMedCrossRefGoogle Scholar
  104. 104.
    Sodir NM et al (2011) Endogenous Myc maintains the tumor microenvironment. Genes Dev 25(9):907–916PubMedCrossRefGoogle Scholar
  105. 105.
    Boshoff C, Weiss R (2002) AIDS-related malignancies. Nat Rev Cancer 2(5):373–382PubMedCrossRefGoogle Scholar
  106. 106.
    Ray-Coquard I et al (2009) Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res 69(13):5383–5391PubMedCrossRefGoogle Scholar
  107. 107.
    Soucek L et al (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13(10):1211–1218PubMedCrossRefGoogle Scholar
  108. 108.
    Shiao SL, Coussens LM (2010) The tumor-immune microenvironment and response to radiation therapy. J Mammary Gland Biol Neoplasia 15(4):411–421PubMedCrossRefGoogle Scholar
  109. 109.
    Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61PubMedCrossRefGoogle Scholar
  110. 110.
    Restifo NP (2010) Can antitumor immunity help to explain “oncogene addiction”? Cancer Cell 18(5):403–405PubMedCrossRefGoogle Scholar
  111. 111.
    Acosta JC et al (2008) Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133(6):1006–1018PubMedCrossRefGoogle Scholar
  112. 112.
    Beatty G, Paterson Y (2001) IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+ T cells requires tumor responsiveness to IFN-gamma. J Immunol 166(4):2276–2282PubMedGoogle Scholar
  113. 113.
    Kuilman T et al (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133(6):1019–1031PubMedCrossRefGoogle Scholar
  114. 114.
    Muller-Hermelink N et al (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13(6):507–518PubMedCrossRefGoogle Scholar
  115. 115.
    Li SS et al (2002) T lymphocyte expression of thrombospondin-1 and adhesion to extracellular matrix components. Eur J Immunol 32(4):1069–1079PubMedCrossRefGoogle Scholar
  116. 116.
    Li SS et al (2006) Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood 108(9):3112–3120PubMedCrossRefGoogle Scholar
  117. 117.
    Young GD, Murphy-Ullrich JE (2004) The tryptophan-rich motifs of the thrombospondin type 1 repeats bind VLAL motifs in the latent transforming growth factor-beta complex. J Biol Chem 279(46):47633–47642PubMedCrossRefGoogle Scholar
  118. 118.
    Becker C et al (2004) TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21(4):491–501PubMedCrossRefGoogle Scholar
  119. 119.
    Tang B et al (2007) Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res 67(18):8643–8652PubMedCrossRefGoogle Scholar
  120. 120.
    Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 21(2):200–208PubMedCrossRefGoogle Scholar
  121. 121.
    Gonzalez-Angulo AM, Hortobagyi GN, Ellis LM (2011) Targeted therapies: peaking beneath the surface of recent bevacizumab trials. Nat Rev Clin Oncol 8(6):319–320PubMedGoogle Scholar
  122. 122.
    Wrzesinski C et al (2010) Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J Immunother 33(1):1–7PubMedCrossRefGoogle Scholar
  123. 123.
    Tran PT et al (2011) Survival and death signals can predict tumor response to therapy after oncogene inactivation. Sci Transl Med 3(103):103ra99PubMedCrossRefGoogle Scholar
  124. 124.
    Califano A (2011) Striking a balance between feasible and realistic biological models. Sci Transl Med 3(103):103ps39PubMedCrossRefGoogle Scholar
  125. 125.
    Willmann JK et al (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7(7):591–607PubMedCrossRefGoogle Scholar
  126. 126.
    Pysz MA, Gambhir SS, Willmann JK (2010) Molecular imaging: current status and emerging strategies. Clin Radiol 65(7):500–516PubMedCrossRefGoogle Scholar
  127. 127.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580PubMedCrossRefGoogle Scholar
  128. 128.
    Nguyen QD, Aboagye EO (2010) Imaging the life and death of tumors in living subjects: preclinical PET imaging of proliferation and apoptosis. Integr Biol 2(10):483–495CrossRefGoogle Scholar
  129. 129.
    Michalski MH, Chen X (2011) Molecular imaging in cancer treatment. Eur J Nucl Med Mol Imaging 38(2):358–377PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David I. Bellovin
    • 1
  • Bikul Das
    • 1
  • Dean W. Felsher
    • 1
    Email author
  1. 1.Division of Oncology, Departments of Medicine and PathologyStanford University School of MedicineStanfordUSA

Personalised recommendations