Systems Biology of Tumor Dormancy pp 73-89

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 734)

Regulation of Tumor Cell Dormancy by Tissue Microenvironments and Autophagy

  • Maria Soledad Sosa
  • Paloma Bragado
  • Jayanta Debnath
  • Julio A. Aguirre-Ghiso
Chapter

Abstract

The development of metastasis is the major cause of death in cancer patients. In certain instances, this occurs shortly after primary tumor detection and treatment, indicating these lesions were already expanding at the moment of diagnosis or initiated exponential growth shortly after. However, in many types of cancer, patients succumb to metastatic disease years and sometimes decades after being treated for a primary tumor. This has led to the notion that in these patients residual disease may remain in a dormant state. Tumor cell dormancy is a poorly understood phase of cancer progression and only recently have its underlying molecular mechanisms started to be revealed. Important questions that remain to be elucidated include not only which mechanisms prevent residual disease from proliferating but also which mechanisms critically maintain the long-term survival of these disseminated residual cells. Herein, we review recent evidence in support of genetic and epigenetic mechanisms driving dormancy. We also explore how therapy may cause the onset of dormancy in the surviving fraction of cells after treatment and how autophagy may be a mechanism that maintains the residual cells that are viable for prolonged periods.

Keywords

Quiescence Minimal residual disease Cellular stress p38 MAPK Metastasis 

References

  1. 1.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRefGoogle Scholar
  2. 2.
    Klein CA (2011) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21(1):42–49PubMedCrossRefGoogle Scholar
  3. 3.
    Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321:1095–1100PubMedCrossRefGoogle Scholar
  4. 4.
    Almog N, Ma L, Raychowdhury R, Schwager C, Erber R, Short S et al (2009) Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Res 69:836–844PubMedCrossRefGoogle Scholar
  5. 5.
    Mahnke YD, Schwendemann J, Beckhove P, Schirrmacher V (2005) Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology 115:325–336PubMedCrossRefGoogle Scholar
  6. 6.
    Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44(18):2721–2725PubMedCrossRefGoogle Scholar
  7. 7.
    Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4: 448–456PubMedCrossRefGoogle Scholar
  8. 8.
    Stoecklein NH, Hosch SB, Bezler M, Stern F, Hartmann CH, Vay C et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453PubMedCrossRefGoogle Scholar
  9. 9.
    Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68PubMedCrossRefGoogle Scholar
  10. 10.
    Schardt JA, Meyer M, Hartmann CH, Schubert F, Schmidt-Kittler O, Fuhrmann C et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:227–239PubMedCrossRefGoogle Scholar
  11. 11.
    Schmidt-Kittler O, Ragg T, Daskalakis A, Granzow M, Ahr A, Blankenstein TJ et al (2003) From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 100:7737–7742PubMedCrossRefGoogle Scholar
  12. 12.
    Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312PubMedCrossRefGoogle Scholar
  13. 13.
    Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56PubMedCrossRefGoogle Scholar
  14. 14.
    Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M et al (2010) Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest 120:2030–2039PubMedCrossRefGoogle Scholar
  15. 15.
    Vidal M, Larson DE, Cagan RL (2006) Csk-deficient boundary cells are eliminated from normal Drosophila epithelia by exclusion, migration, and apoptosis. Dev Cell 10:33–44PubMedCrossRefGoogle Scholar
  16. 16.
    Klein CA, Hölzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5(16):1788–1798PubMedCrossRefGoogle Scholar
  17. 17.
    Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Rodrigues M, Dieras V, Mignot L et al (2008) Time to metastatic relapse and breast cancer cells dissemination in bone marrow at metastatic relapse. Clin Exp Metastasis 25:871–875PubMedCrossRefGoogle Scholar
  18. 18.
    Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552PubMedCrossRefGoogle Scholar
  19. 19.
    Kitzis A, Brizard F, Dascalescu C, Chomel JC, Guilhot F, Brizard A (2001) Persistence of transcriptionally silent BCR-ABL rearrangements in chronic myeloid leukemia patients in sustained complete cytogenetic remission. Leuk Lymphoma 42:933–944PubMedCrossRefGoogle Scholar
  20. 20.
    Talpaz M, Estrov Z, Kantarjian H, Ku S, Foteh A, Kurzroc R (1994) Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest 94:1383–1389PubMedCrossRefGoogle Scholar
  21. 21.
    Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908PubMedCrossRefGoogle Scholar
  22. 22.
    Joyce JA, Pollard JW (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9:239–252PubMedCrossRefGoogle Scholar
  23. 23.
    Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9:274–284PubMedCrossRefGoogle Scholar
  24. 24.
    Hickson JA, Huo D, Vander Griend DJ, Lin A, Rinker-Schaeffer CW, Yamada SD (2006) The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 66:2264–2270PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor J, Hickson J, Lotan T, Yamada DS, Rinker-Schaeffer C (2008) Using metastasis suppressor proteins to dissect interactions among cancer cells and their microenvironment. Cancer Metastasis Rev 27:67–73PubMedCrossRefGoogle Scholar
  26. 26.
    Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672PubMedCrossRefGoogle Scholar
  27. 27.
    Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B et al (2009) A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell 137:87–98PubMedCrossRefGoogle Scholar
  28. 28.
    Aguirre Ghiso JA, Kovalski K, Ossowski L (1999) Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J Cell Biol 147:89–104PubMedCrossRefGoogle Scholar
  29. 29.
    Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS et al (2010) Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 70:5706–5716PubMedCrossRefGoogle Scholar
  30. 30.
    Ranganathan AC, Ojha S, Kourtidis A, Conklin DS, Aguirre-Ghiso JA (2008) Dual function of pancreatic endoplasmic reticulum kinase in tumor cell growth arrest and survival. Cancer Res 68:3260–3268PubMedCrossRefGoogle Scholar
  31. 31.
    Ranganathan AC, Zhang L, Adam AP, Aguirre-Ghiso JA (2006) Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res 66: 1702–1711PubMedCrossRefGoogle Scholar
  32. 32.
    Ranganathan AC, Adam AP, Aguirre-Ghiso JA (2006) Opposing roles of mitogenic and stress signaling pathways in the induction of cancer dormancy. Cell Cycle 5(16):1799–1807PubMedCrossRefGoogle Scholar
  33. 33.
    Harrison LB, Sessions RB, Ki-Hong W (2003) Head and neck cancer. A multidisciplinary approach, 3rd edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  34. 34.
    Gath HJ, Brakenhoff RH (1999) Minimal residual disease in head and neck cancer. Cancer Metastasis Rev 18:109–126PubMedCrossRefGoogle Scholar
  35. 35.
    Wikman H, Vessella R, Pantel K (2008) Cancer micrometastasis and tumour dormancy. APMIS 116:754–770PubMedCrossRefGoogle Scholar
  36. 36.
    Fan X, Valdimarsdottir G, Larsson J, Brun A, Magnusson M, Jacobsen SE et al (2002) Transient disruption of autocrine TGF-beta signaling leads to enhanced survival and proliferation potential in single primitive human hemopoietic progenitor cells. J Immunol 168:755–762PubMedGoogle Scholar
  37. 37.
    Fortunel N, Hatzfeld J, Kisselev S, Monier MN, Ducos K, Cardoso A et al (2000) Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-beta type II receptor in a short-term in vitro assay. Stem Cells 18:102–111PubMedCrossRefGoogle Scholar
  38. 38.
    Scandura JM, Boccuni P, Massague J, Nimer SD (2004) Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proc Natl Acad Sci USA 101:15231–15236PubMedCrossRefGoogle Scholar
  39. 39.
    Yamazaki S, Iwama A, Takayanagi S, Eto K, Ema H, Nakauchi H (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256PubMedCrossRefGoogle Scholar
  40. 40.
    Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al (2004) Conditional overexpression of active transforming growth factor beta1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 64:9002–9011PubMedCrossRefGoogle Scholar
  41. 41.
    Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRefGoogle Scholar
  42. 42.
    Dumont N, Arteaga CL (2003) Targeting the TGF beta signaling network in human neoplasia. Cancer Cell 3:531–536PubMedCrossRefGoogle Scholar
  43. 43.
    Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821PubMedCrossRefGoogle Scholar
  44. 44.
    Hideshima T, Podar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524PubMedCrossRefGoogle Scholar
  45. 45.
    Javelaud D, Alexaki VI, Mauviel A (2008) Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res 21:123–132PubMedCrossRefGoogle Scholar
  46. 46.
    Hussein MR (2005) Transforming growth factor-beta and malignant melanoma: molecular mechanisms. J Cutan Pathol 32:389–395PubMedCrossRefGoogle Scholar
  47. 47.
    Hsu MY, Rovinsky S, Penmatcha S, Herlyn M, Muirhead D (2005) Bone morphogenetic proteins in melanoma: angel or devil? Cancer Metastasis Rev 24:251–263PubMedCrossRefGoogle Scholar
  48. 48.
    Reed JA, Bales E, Xu W, Okan NA, Bandyopadhyay D, Medrano EE (2001) Cytoplasmic localization of the oncogenic protein Ski in human cutaneous melanomas in vivo: functional implications for transforming growth factor beta signaling. Cancer Res 61:8074–8078PubMedGoogle Scholar
  49. 49.
    Zapas JL, Coley HC, Beam SL, Brown SD, Jablonski KA, Elias EG (2003) The risk of regional lymph node metastases in patients with melanoma less than 1.0 mm thick: recommendations for sentinel lymph node biopsy. J Am Coll Surg 197:403–407PubMedCrossRefGoogle Scholar
  50. 50.
    Gamel JW, George SL, Edwards MJ, Seigler HF (2002) The long-term clinical course of patients with cutaneous melanoma. Cancer 95:1286–1293PubMedCrossRefGoogle Scholar
  51. 51.
    Eskelin S, Pyrhonen S, Summanen P, Hahka-Kemppinen M, Kivela T (2000) Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment. Ophthalmology 107:1443–1449PubMedCrossRefGoogle Scholar
  52. 52.
    Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345PubMedCrossRefGoogle Scholar
  53. 53.
    Aguirre-Ghiso JA, Estrada Y, Liu D, Ossowski L (2003) ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Res 63:1684–1695PubMedGoogle Scholar
  54. 54.
    Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879PubMedGoogle Scholar
  55. 55.
    Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457PubMedCrossRefGoogle Scholar
  56. 56.
    Aguirre Ghiso JA (2002) Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene 21:2513–2524PubMedCrossRefGoogle Scholar
  57. 57.
    Schewe DM, Aguirre-Ghiso JA (2008) ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524PubMedCrossRefGoogle Scholar
  58. 58.
    Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA (2006) Tumor cell dormancy induced by p38(SAPK) and ER-stress signaling: an adaptive advantage for metastatic cells? Cancer Biol Ther 5:729–735PubMedCrossRefGoogle Scholar
  59. 59.
    Fu Y, Li J, Lee AS (2007) GRP78/BiP inhibits endoplasmic reticulum BIK and protects human breast cancer cells against estrogen starvation-induced apoptosis. Cancer Res 67:3734–3740PubMedCrossRefGoogle Scholar
  60. 60.
    Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779PubMedCrossRefGoogle Scholar
  61. 61.
    Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634PubMedCrossRefGoogle Scholar
  62. 62.
    Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J (2002) TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 12:1448–1461PubMedCrossRefGoogle Scholar
  63. 63.
    Lopez-Maury L, Marguerat S, Bahler J (2008) Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet 9:583–593PubMedCrossRefGoogle Scholar
  64. 64.
    Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075PubMedCrossRefGoogle Scholar
  65. 65.
    Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD, Sakai Y, Sandoval IV et al (2003) A unified nomenclature for yeast autophagy-related genes. Dev Cell 5:539–545PubMedCrossRefGoogle Scholar
  66. 66.
    Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248PubMedCrossRefGoogle Scholar
  67. 67.
    Roy S, Debnath J (2010) Autophagy and tumorigenesis. Semin Immunopathol 32:383–396PubMedCrossRefGoogle Scholar
  68. 68.
    Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I et al (2005) Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 169:425–434PubMedCrossRefGoogle Scholar
  69. 69.
    Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al (2004) The role of autophagy during the early neonatal starvation period. Nature 432:1032–1036PubMedCrossRefGoogle Scholar
  70. 70.
    Melendez A, Talloczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391PubMedCrossRefGoogle Scholar
  71. 71.
    Korah R, Boots M, Wieder R (2004) Integrin alpha5beta1 promotes survival of growth-arrested breast cancer cells: an in vitro paradigm for breast cancer dormancy in bone marrow. Cancer Res 64:4514–4522PubMedCrossRefGoogle Scholar
  72. 72.
    White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U et al (2004) Targeted disruption of beta1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6:159–170PubMedCrossRefGoogle Scholar
  73. 73.
    Fung C, Lock R, Gao S, Salas E, Debnath J (2008) Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell 19:797–806PubMedCrossRefGoogle Scholar
  74. 74.
    Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al (2009) Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 16:67–78PubMedCrossRefGoogle Scholar
  75. 75.
    Han J, Hou W, Goldstein LA, Lu C, Stolz DB, Yin XM et al (2008) Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283:19665–19677PubMedCrossRefGoogle Scholar
  76. 76.
    Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A et al (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685PubMedCrossRefGoogle Scholar
  77. 77.
    Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare S et al (2008) The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest 118: 3917–3929PubMedGoogle Scholar
  78. 78.
    Gupta A, Roy S, Lazar AJ, Wang WL, McAuliffe JC, Reynoso D et al (2010) Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc Natl Acad Sci USA 107:14333–14338PubMedCrossRefGoogle Scholar
  79. 79.
    Rubin BP, Debnath J (2010) Therapeutic implications of autophagy-mediated cell survival in gastrointestinal stromal tumor after treatment with imatinib mesylate. Autophagy 6: 1190–1191PubMedCrossRefGoogle Scholar
  80. 80.
    Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Maria Soledad Sosa
    • 1
  • Paloma Bragado
    • 1
  • Jayanta Debnath
    • 2
  • Julio A. Aguirre-Ghiso
    • 1
  1. 1.Departments of Medicine and OtolaryngologyTisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of MedicineNew YorkUSA
  2. 2.Department of Pathology, Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations