Advertisement

Development of Binaural and Spatial Hearing

  • Ruth Y. LitovskyEmail author
Chapter
Part of the Springer Handbook of Auditory Research book series (SHAR, volume 42)

Abstract

When a person hears sounds in the environment, there are several important tasks that the auditory system must accomplish, such as determining the location of sound sources and the meaning of those sources. These tasks are relevant to children who spend time every day in noisy environments, such as classrooms, and adults who have to operate in complex auditory environments. The auditory mechanisms that enable listeners to accomplish these tasks are generally thought to involve binaural processing. Acoustic information arriving at the two ears is compared at the level of the brain stem, combined and transmitted to the central auditory system for further analysis. As discussed in the text that follows, in listeners with hearing loss these mechanisms may be compromised or not fully developed.

Keywords

Sound Localization Interaural Time Difference Interaural Level Difference Spatial Hearing Informational Masking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is very grateful to students, postdoctoral fellows, and collaborators whose participation in the cited studies was important to the success of this chapter. They include Shelly Godar, Tina Grieco-Calub, Patti Johnstone, Soha Garadat, Smita Agrawal, Lynne Werner, and Jenny Saffran. The author received support for her work from the National Institutes of Health (R01 DC 003083 and 5R01 DC 008365).

References

  1. Arbogast, T. L., Mason, C. R., & Kidd, G., Jr. (2002). The effect of spatial separation on informational and energetic masking of speech. Journal of the Acoustical Society of America, 112(5 Pt 1), 2086–2098.PubMedCrossRefGoogle Scholar
  2. Ashmead, D. H., Clifton, R. K., & Reese, E. P. (1986). Development of auditory localization in dogs: single source and precedence effect sounds. Developmental Psychobiology, 19(2), 91–103.PubMedCrossRefGoogle Scholar
  3. Ashmead, D. H., Davis, D. L., Whalen, T., & Odom, R. D. (1991). Sound localization and sensitivity to interaural time differences in human infants. Child Development, 62(6), 1211–1226.PubMedCrossRefGoogle Scholar
  4. Bernstein, L. R., & Trahiotis, C. (1992). Discrimination of interaural envelope correlation and its relation to binaural unmasking at high frequencies. Journal of the Acoustical Society of America, 91, 306–316.PubMedCrossRefGoogle Scholar
  5. Bernstein, L. R., & Trahiotis, C. (2002). Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli.” Journal of the Acoustical Society of America, 112(3 Pt 1), 1026–1036.PubMedCrossRefGoogle Scholar
  6. Blauert, J. (1997). Spatial hearing: The psychophysics of human sound localization, revised edition. Cambridge, MA: MIT Press.Google Scholar
  7. Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review of research on speech intelligibility in multiple-talker conditions. Acustica, 86, 117–128.Google Scholar
  8. Brungart, D. S., & Simpson, B. D. (2002). The effects of spatial separation in distance on the informational and energetic masking of a nearby speech signal. Journal of the Acoustical Society of America, 112(2), 664–676.PubMedCrossRefGoogle Scholar
  9. Cherry, E. C. (1953). Some experiments on the recognition of speech, with one and with two ears. Journal of the Acoustical Society of America, 25(5), 975–979.CrossRefGoogle Scholar
  10. Ching, T. Y., Hill, M., Brew, J., Incerti, P., Priolo, S., Rushbrook, E., & Forsythe L. (2005). The effect of auditory experience on speech perception, localization, and functional performance of children who use a cochlear implant and a hearing aid in opposite ears. International Journal of Audiology, 44(12), 677–690.PubMedCrossRefGoogle Scholar
  11. Ching, T. Y., van Wanrooy, E., Hill, M., & Incerti, P. (2006). Performance in children with hearing aids or cochlear implants: Bilateral stimulation and binaural hearing. International Journal of Audiology, 45(Supplement 1), S108–112.PubMedCrossRefGoogle Scholar
  12. Clifton, R. K.., Morrongiello, B. A.., Kulig, J. W., & Dowd, J. M. (1981). ‘Newborns’ orientation toward sound: Possible implications for cortical development. Child Development 52, 833–838.PubMedCrossRefGoogle Scholar
  13. Clifton, R. K., Perris, E., & Bullinger, A. (1991). Infants’ perception of auditory space. Developmental Psychology 27, 187–197.CrossRefGoogle Scholar
  14. Clifton, R., Freyman, R., Litovsky, R., & McCall, D. (1994). Listeners’ expectations about echoes can raise or lower echo threshold. Journal of the Acoustical Society of America, 95(5), 1525–1533.PubMedCrossRefGoogle Scholar
  15. Cranford, J., Diamond, I. T., Ravizza, R., & Whitfield, L. C. (1971). Unilateral lesions of the auditory cortex and the ‘precedence effect.’ Journal of Physiology 213(2), 24P–25P.PubMedGoogle Scholar
  16. Culling, J. F., & Summerfield, Q. (1995). Perceptual separation of concurrent speech sounds: Absence of across-frequency grouping by common interaural delay, Journal of the Acoustical Society of America, 98, 785–797.PubMedCrossRefGoogle Scholar
  17. Culling, J. F., Hawley, M. L., & Litovsky, R.Y. (2004). The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. Journal of the Acoustical Society of America, 116, 1057–1065.PubMedCrossRefGoogle Scholar
  18. Durlach, N. I., Mason, C. R., Kidd, G., Jr., Arbogast, T. L., Colburn, H. S., & Shinn Cunningham, B. G. (2003). Note on informational masking. Journal of the Acoustical Society of America,113, 2984–2987.PubMedCrossRefGoogle Scholar
  19. Fernald, A., Pinto, J. P., Swingley, D., Weinberg, A., & McRoberts, G. W. (1998). Rapid gains in speed of verbal processing by infants in the 2nd year. Psychological Science, 9, 228–231.CrossRefGoogle Scholar
  20. Freyman, R. L., Helfer, K. S., McCall, D. D., & Clifton, R. K. (1999). The role of perceived spatial separation in the unmasking of speech. Journal of the Acoustical Society of America, 106, 3578–3588.PubMedCrossRefGoogle Scholar
  21. Gabriel, K. J., & Colburn, H. S. (1981). Interaural correlation discrimination: I. Bandwidth and level dependence. Journal of the Acoustical Society of America, 69, 1394–1401.PubMedCrossRefGoogle Scholar
  22. Garadat, S. N., & Litovsky, R.Y. (2007). Speech intelligibility in free field: Spatial unmasking in preschool children. Journal of the Acoustical Society of America, 121(2), 1047–1055.PubMedCrossRefGoogle Scholar
  23. Godar, S. P., & Litovsky, R.Y. (2010). Experience with bilateral cochlear implants improves sound. Otology Neurotology, 31(8):1287–1292.PubMedCrossRefGoogle Scholar
  24. Grantham, D. W., & Wightman, F. L. (1978). Detectability of varying interaural temporal differences. Journal of the Acoustical Society of America, 63(2), 511–523.PubMedCrossRefGoogle Scholar
  25. Green, J. S., & Sanes, D. H. (2005). Early appearance of inhibitory input to the MNTB supports binaural processing during development. Journal of Neurophysiology 94, 3826–3835.PubMedCrossRefGoogle Scholar
  26. Grieco-Calub, T., & Litovsky, R. (2010). Sound localization skills in children who use bilateral cochlear implants and in children with normal acoustic hearing. Ear Hearing 31(5):645–656.Google Scholar
  27. Grieco-Calub, T. M., Litovsky, R.Y., & Werner, L. A. (2008). Using the observer-based psychophysical procedure to assess localization acuity in toddlers who use bilateral cochlear implants. Otology Neurotology, 29(2), 235–239.PubMedCrossRefGoogle Scholar
  28. Grieco-Calub, T., Saffran, J., & Litovsky, R.Y. (2009). Spoken word recognition in toddlers who use cochlear implants. Journal of Speech Language Hearing Research, 52(6), 1390–1400.CrossRefGoogle Scholar
  29. Grose, J., Hall, J., & Dev, M. (1997). MLD in children: Effects of signal and masker bandwidths. Journal of Speech Language Hearing Research, 40, 955–959.Google Scholar
  30. Hall, J. W. 3rd, Buss, E., & Grose, J. H. (2007). The binaural temporal window in adults and children. Journal of the Acoustical Society of America, 121(1), 401–410.PubMedCrossRefGoogle Scholar
  31. Hartmann, W. M. (1983).Localization of sound in rooms. Journal of the Acoustical Society of America, 74(5), 1380–1391.PubMedCrossRefGoogle Scholar
  32. Hartmann, W. M., & Rakerd, B. (1989). On the minimum audible angle—a decision theory approach. Journal of the Acoustical Society of America, 85, 2031–2041.PubMedCrossRefGoogle Scholar
  33. Hartung, K., & Trahiotis, C. (2001). Peripheral auditory processing and investigations of the “precedence effect” which utilize successive transient stimuli. Journal of the Acoustical Society of America 110, 1505–1513.PubMedCrossRefGoogle Scholar
  34. Hawley, M. L., Litovsky, R.Y., & Colburn, H. S. (1999). Speech intelligibility and localization in complex environments. Journal of the Acoustical Society of America, 105, 3436–3448.PubMedCrossRefGoogle Scholar
  35. Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. Journal of the Acoustical Society of America, 115, 833–843.PubMedCrossRefGoogle Scholar
  36. Johnstone, P. M. (2006). Informational masking and spatial asymmetry in a “cocktail party” environment. University of Wisconsin-Madison, unpublished Ph.D. dissertation.Google Scholar
  37. Johnstone, P. M., & Litovsky, R.Y. (2006). Effect of masker type on speech intelligibility and spatial release from masking in children and adults. Journal of the Acoustical Society of America 120(4), 2177–2189.PubMedCrossRefGoogle Scholar
  38. Jones, G. L., & Litovsky, R.Y. (2008). Effects of uncertainty in a cocktail party environment in adults. Journal of the Acoustical Society of America 124, 3818–3830.PubMedCrossRefGoogle Scholar
  39. Joris, P., & Yin, T. C. (2007). A matter of time: Internal delays in binaural processing. Trends in Neuroscience, 30, 70–78.CrossRefGoogle Scholar
  40. Kacelnik, O., Nodal, F. R., Parsons, C. H., & King, A. J. (2006). Training-induced plasticity of auditory localization in adult mammals. PLoS Biology, 4(4), e71.PubMedCrossRefGoogle Scholar
  41. Kidd, G., Jr., Mason, C. R., Rohtla, T. L., & Deliwala, P. S. (1998). Release from masking due to spatial separation of sources in the identification of nonspeech auditory patterns. Journal of the Acoustical Society of America, 104(1), 422–431.PubMedCrossRefGoogle Scholar
  42. Kollmeier, B., & Gilkey, R. (1990). Binaural forward and backward masking: Evidence for sluggishness in binaural detection. Journal of the Acoustical Society of America, 87, 1709–1719.PubMedCrossRefGoogle Scholar
  43. Leibold, L. J., & Werner, L. A. (2006). Effect of masker-frequency variability on the detection performance of infants and adults. Journal of the Acoustical Society of America 119(6), 3960–3970.PubMedCrossRefGoogle Scholar
  44. Litovsky, R. (1997). Developmental changes in the precedence effect: Estimates of minimal audible angle. Journal of the Acoustical Society of America, 102, 1739–1745.PubMedCrossRefGoogle Scholar
  45. Litovsky, R.Y. (1998). Physiological studies of the precedence effect in the inferior colliculus of the kitten. Journal of the Acoustical Society of America 103, 3139–3152.PubMedCrossRefGoogle Scholar
  46. Litovsky, R.Y. (2005). Speech intelligibility and spatial release from masking in young children. Journal of the Acoustical Society of America, 117(5), 3091–3099.PubMedCrossRefGoogle Scholar
  47. Litovsky, R., & Ashmead, D. (1997). Developmental aspects of binaural and spatial hearing. In H. Gilkey & T. R. Anderson (Eds.), Binaural and spatial hearing (pp. 571–592). R Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  48. Litovsky, R.Y., & Clifton, R. K. (1992). Use of sound-pressure level in auditory distance discrimination by 6–month-old infants and adults. Journal of the Acoustical Society of America 92(2), 794–802.PubMedCrossRefGoogle Scholar
  49. Litovsky, R.Y., & Delgutte, B. (2002). Neural correlates of the precedence effect in the inferior colliculus: Effect of localization cues. Journal of Neurophysiology, 87, 976–994.PubMedGoogle Scholar
  50. Litovsky, R.Y., & Godar, S. P. (2010). Difference in precedence effect between children and adults signifies development of sound localization abilities in complex listening tasks. Journal of the Acoustical Society of America, 128(4), 1979–1991.PubMedCrossRefGoogle Scholar
  51. Litovsky, R.Y. (2011). Spatial hearing abilities in 2-year old bilateral CI users. Invited presentation at the 13th International Symposium on Cochlear Implants in Children. Chicago, IL.Google Scholar
  52. Litovsky, R., & Macmillan, N. (1994). Minimum auditory angle for clicks with simulated echoes: Effects of azimuth and standard. Journal of the Acoustical Society of America, 96(2), 752–758.PubMedCrossRefGoogle Scholar
  53. Litovsky, R.Y., & Madell, J. (2009). Bilateral cochlear implants in children. In L. Eisenberg (Ed.), Clinical management of children with cochlear implants (pp. 59–83). San Diego: Plural Publishing.Google Scholar
  54. Litovsky, R.Y., & Yin, T. C. (1998). Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. Journal of Neurophysiology, 80(3), 1285–1301.PubMedGoogle Scholar
  55. Litovsky, R.Y., Colburn, H. S., Yost, W. A., & Guzman, S. J. (1999). The precedence effect. Journal of the Acoustical Society of America, 106, 1633–1654.PubMedCrossRefGoogle Scholar
  56. Litovsky, R.Y., Johnstone, P. M., & Godar, S. P. (2006a). Benefits of bilateral cochlear implants and/or hearing aids in children. International Journal of Audiology, 45(Supplement 1), S78–91.PubMedCrossRefGoogle Scholar
  57. Litovsky, R.Y., Johnstone, P. M., Godar, S., Agrawal, S., Parkinson, A., Peters, R., & Lake, J. (2006b). Bilateral cochlear implants in children: Localization acuity measured with minimum audible angle. Ear and Hearing, 27, 43–59.PubMedCrossRefGoogle Scholar
  58. Litovsky, R.Y., Parkinson, A., & Arcaroli, J. (2009). Spatial hearing and speech intelligibility in bilateral cochlear implant users. Ear and Hearing, 30(4), 419–431.PubMedCrossRefGoogle Scholar
  59. Litovsky, R.Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. Journal of the Acoustical Society of America 127(1), 400–414.PubMedCrossRefGoogle Scholar
  60. Litovsky, R.Y. (2011). Spatial hearing abilities in 2-year old bilateral CI users. Invited presentation at the 13th International Symposium on Cochlear Implants in Children. Chicago, IL.PubMedCrossRefGoogle Scholar
  61. Middlebrooks, J. C., & Green, D. M. (1991). Sound localization by human listeners. Annual Review of Psychology 42, 135–159.PubMedCrossRefGoogle Scholar
  62. Mills, A. (1958). On the minimum audible angle. Journal of the Acoustical Society of America 30, 237–246.CrossRefGoogle Scholar
  63. Misurelli, S. M., Zettler, C. M., Godar, S. P., & Litovsky, R.Y. (2010). Spatial release from masking in children: Symmetric and asymmetric masker distribution in the horizontal plane. Presented at the Meeting of the Association for Research in Otolaryngology, February 6–10, 2010, Anaheim, CA.Google Scholar
  64. Moore, J. M., Thompson, G., & Thompson, M. (1975). Auditory localization of infants as a function of reinforcement conditions. Journal of Speech and Hearing Disorders, 40, 29–34.PubMedGoogle Scholar
  65. Morrongiello, B. A. (1988). Infants’ localization of sounds along the horizontal axis: Estimates of minimum audible angle. Developmental Psychology 24, 8–13.CrossRefGoogle Scholar
  66. Muir, D. W., Clifton, R. K., & Clarkson, M. G. (1989). The development of a human auditory localization response: A U-shaped function. Canadian Journal of Psychology 43(2), 199–216.PubMedCrossRefGoogle Scholar
  67. Nodal, F. R., Kacelnik, O., Bajo, V. M., Bizley, J. K., Moore, D. R., & King, A. J. (2010). Lesions of the auditory cortex impair azimuthal sound localization and its recalibration in ferrets. Journal of Neurophysiology, 103(3), 1209–1225.PubMedCrossRefGoogle Scholar
  68. Nozza, R. J., Wagner, E. F., & Crandell, M. A. (1988). Binaural release from masking for a speech sound in infants, preschoolers, and adults. Journal of Speech and Hearing Research, 31(2), 212–218.PubMedGoogle Scholar
  69. Olsho, L. W., Koch, E. G., & Halpin, C. F. (1987). Level and age effects in infant frequency discrimination. Journal of the Acoustical Society of America, 82(2), 454–464.PubMedCrossRefGoogle Scholar
  70. Olsho, L.W., Koch, E. G., Carter, E. A., Halpin, C. F., & Spetner, N. B. (1988). Pure-tone sensitivity of human infants. Journal of the Acoustical Society of America 84(4), 1316–1324.PubMedCrossRefGoogle Scholar
  71. Perris, E. E., & Clifton, R. K. (1988). Reaching in the dark toward sound as a measure of auditory localization in 7-month-old infants. Infant Behavior and Development, 11, 477–495.CrossRefGoogle Scholar
  72. Peters, R., Litovsky, R. Y., Parkinson, A., & Lake, J. (2007). Importance of age and post-implantation experience on performance in children with sequential bilateral cochlear implants. Otology & Neurotology, 28(5), 649–657.CrossRefGoogle Scholar
  73. Plomp, R., & Mimpen, A. M. (1981). Effect of the orientation of the speaker’s head and the azimuth of a noise source on the speech reception threshold for sentences. Acustica, 48, 325–328.Google Scholar
  74. Pollack, I., & Pickett, J. M. (1958). Stereophonic listening and speech intelligibility against voice babble. Journal of the Acoustical Society of America, 30, 131–133.CrossRefGoogle Scholar
  75. Populin, L. C. (2008). Human sound localization: Measurements in untrained, head-unrestrained subjects using gaze as a pointer. Experimental Brain Research, 190(1), 11–30.CrossRefGoogle Scholar
  76. Scott, S. K., Rosen, S., Beaman, C. P., Davis, J. P., & Wise, R. J. (2009). The neural processing of masked speech: Evidence for different mechanisms in the left and right temporal lobes. Journal of the Acoustical Society of America, 125(3), 1737–1743.PubMedCrossRefGoogle Scholar
  77. Spetner, N. B., & Olsho, L. W. (1990). Auditory frequency resolution in human infancy. Child Development 61(3), 632–652.PubMedCrossRefGoogle Scholar
  78. Svirskis, G., Kotak, V. C., Sanes, D. H., & Rinzel, J. (2002). Enhancement of signal-to-noise ratio and phase locking by a low threshold outward current in auditory neurons. Journal of Neuroscience 22, 11019–11025.PubMedGoogle Scholar
  79. van de Par, S., & Kohlrausch, A. (1999). Dependence of binaural masking level difference on center frequency, masker bandwidth, and interaural parameters. Journal of the Acoustical Society of America, 106, 1940–1947.PubMedCrossRefGoogle Scholar
  80. Van Deun, L., van Wieringen, A., Van den Bogaert, T., Scherf, F., Offeciers, F. E., Van de Heyning, P. H., Desloovere, C., Dhooge, I. J., Deggouj, N., De Raeve, L., & Wouters, J. (2009). Sound localization, sound lateralization, and binaural masking level differences in young children with normal hearing. Ear and Hearing, 30, 178–190.PubMedCrossRefGoogle Scholar
  81. van Hoesel, R. J. (2004). Exploring the benefits of bilateral cochlear implants. Audiology & Neurotology 9, 234–246.CrossRefGoogle Scholar
  82. van Hoesel, R. J., & Tyler, R. S. (2003). Speech perception, localization, and lateralization with bilateral cochlear implants. Journal of the Acoustical Society of America 113, 1617–1630.PubMedCrossRefGoogle Scholar
  83. Werner, L. A. (1999). Forward masking among infant and adult listeners. Journal of the Acoustical Society of America 105(4), 2445–2453.PubMedCrossRefGoogle Scholar
  84. Whitfield, I. C., Cranford, J., Ravizza, R., & Diamond, I. T. (1972). Effects of unilateral ablation of auditory cortex in cat on complex sound localization. Journal of Neurophysiology 35(5), 718–731.PubMedGoogle Scholar
  85. Wightman, F. L., & Kistler, D. J. (2005). Informational masking of speech in children: Effects of ipsilateral and contralateral distracters. Journal of the Acoustical Society of America 118(5), 3164–3176.PubMedCrossRefGoogle Scholar
  86. Wilmington, D., Gray, L., & Jahrsdoerfer, R. (1994). Binaural processing after corrected congenital unilateral conductive hearing loss. Hearing Research 74(1–2), 99–114.PubMedCrossRefGoogle Scholar
  87. Wright, B. A., & Fitzgerald, M. B. (2001). Different patterns of human discrimination learning for two interaural cues to sound-source location. Proceedings of the National Academy of Sciences of the USA 98(21), 12307–12312.PubMedCrossRefGoogle Scholar
  88. Xia, J., Brughera, A., Colburn, H. S., & Shinn-Cunningham, B. (2010). Physiological and psychophysical modeling of the precedence effect. Journal of t he Association for Research in Otolaryngology 11(3), 495–513.CrossRefGoogle Scholar
  89. Zurek, P. M., & Durlach, N. I. (1987). Masker-bandwidth dependence in homophasic and antiphasic tone detection. Journal of the Acoustical Society of America 81, 459–464.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.University of Wisconsin Waisman CenterMadisonUSA

Personalised recommendations