Advertisement

Multijunction Approaches to Photoelectrochemical Water Splitting

  • Eric L. MillerEmail author
  • Alex DeAngelis
  • Stewart Mallory
Chapter
Part of the Electronic Materials: Science & Technology book series (EMST, volume 102)

Abstract

The key to successful deployment of photoelectrochemical (PEC) water-splitting for commercial renewable hydrogen production will be in the identification and development of innovative semiconductor materials systems and devices, likely involving multijunction configurations. Multijunction approaches offer some of the best hope for achieving practical PEC hydrogen production in the near term, but complex materials and interface issues still need to be addressed by the scientific community. This chapter explores the challenges and benefits of large-scale solar water splitting for renewable hydrogen production, with specific focus on the multijunction PEC production pathways. The technical motivation and approach in the R&D of multijunction PEC devices and systems are considered, and examples of progress in laboratory scale prototypes are presented.

Keywords

Hydrogen Production Water Splitting Hydrogen Evolution Reaction Oxygen Evolution Reaction Back Contact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge and express their great admiration for all members of the international PEC research and development community; with special nods of appreciation to the US Department of Energy’s PEC Working Group supported by the Fuel Cells Technologies Office, and to Annex-26 of the International Energy Agency’s Hydrogen Implementing Agreement. They also thank the members of the Thin Films Laboratory at the University of Hawaii at Manoa’s Hawaii Natural Energy Institute, including Drs. Nicolas Gaillard, Bor Yann Liaw, Yuancheng Chang, and Richard Rocheleau, as well as Jess Kaneshiro, Jeremy Kowalczyk, Xi Song, and Brett Ikei for their encouragement and support to this effort.

References

  1. 1.
    Khaselev, O., Bansal, A., Turner, J.A.: High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int. J. Hydrogen Energy 26, 127–132 (2001)Google Scholar
  2. 2.
    Khaselev, O., Turner, J.A.: A monolithic photovoltaic photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)Google Scholar
  3. 3.
    Andreev, V.M.: GaAs and high-efficiency space cells. In: Markvart, T., Castañer, L. (eds.) Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, New York (2003)Google Scholar
  4. 4.
    Deutsch, T.G., Koval, C.A., Turner, J.A.: III − V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN. J. Phys. Chem. B 110, 25297–25307 (2006)Google Scholar
  5. 5.
    Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)Google Scholar
  6. 6.
    Marsen, B., Miller, E.L., Paluselli, D., Rocheleau, R.E.: Progress in sputtered tungsten trioxide for photoelectrode applications. Int. J. Hydrogen Energy 32, 3110–3115 (2007)Google Scholar
  7. 7.
    Gaillard, N., Chang, Y., Kaneshiro, J., Deangelis, A., Miller, E.L.: Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’i. Proc. SPIE 7770, 77700V–77701V (2010)Google Scholar
  8. 8.
    Rocheleau, R.E., Miller, E.L., Misra, A.: High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998)Google Scholar
  9. 9.
    Miller, E.L., Gaillard, N., Kaneshiro, J., DeAngelis, A., Garland, R.: Progress in new semiconductor materials classes for solar photoelectrolysis. Int. J. Energy Res 34, 1215–1222 (2010)Google Scholar
  10. 10.
  11. 11.
    Li, Y., Zhang, J.Z.: Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 4, 517–528 (2010)zbMATHGoogle Scholar
  12. 12.
    Bush, G.W.: State of the Union. Presented in Washington, DC, USA, 28 January 2003Google Scholar
  13. 13.
    Rifkin, J.: The Hydrogen Economy. Tarcher (2003)Google Scholar
  14. 14.
    Romm, J.J.: The Hype About Hydrogen. Island, New York (2004)Google Scholar
  15. 15.
    Bromaghim, G., Gibeault, K., Serfass, J., Serfass, P., Wagner, E.: Hydrogen and Fuel Cells: The U.S. Market Report. National Hydrogen Association, 22 March 2010Google Scholar
  16. 16.
    Collodi, G., Bressan, L., Ruggeri, F., Uncuoglu, D.: Hydrogen Production for Upgrading Projects in Refineries. Foster Wheeler Italiana S.p.A, Via Caboto 1, 20094 Corsico – Milan – Italy. http://www.fwc.com/publications/tech_papers/files/Hydrogen%20Production%20for%20Upgrading%20in%20Refineries.pdf (2009). Accessed 29 Mar 2011
  17. 17.
    U.S. Department of Energy: Natural Gas Reforming. http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural_gas.html. Accessed 29 Mar 2011
  18. 18.
    Ball, M., Wietschel, M.: The Hydrogen Economy: Opportunities and Challenges. Cambridge Press, New York (2009)Google Scholar
  19. 19.
    Yürüm, Y.: Hydrogen energy system: production and utilization of hydrogen and future aspects. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  20. 20.
    Turner, J.A.: A realizable renewable energy future. Science 285, 687–689 (1999)Google Scholar
  21. 21.
    Energy Information Administration: World Proved Reserves of Oil and Natural Gas, Most Recent Estimates. 3 March 2009. http://www.eia.doe.gov/emeu/international/reserves.html. Accessed 29 Mar 2011
  22. 22.
    Energy Information Administration: World Petroleum Consumption, 1960–2008. http://www.eia.doe.gov/aer/txt/ptb1110.html. Accessed 29 Mar 2011
  23. 23.
    Energy Information Administration: International Energy Outlook 2007: Petroleum and Other Liquid Fuels. http://www.eia.doe.gov/oiaf/archive/ieo07/pdf/oil.pdf. Accessed 29 Mar 2011
  24. 24.
    Safina, C.: Testimony to the House Subcommittee on Energy and Environment. 21 May 2010Google Scholar
  25. 25.
    U. S. Department of Energy, Office of Science: Basic Research Needs for Solar Energy Utilization. Washington (2005)Google Scholar
  26. 26.
    Green, M.A.: Solar cells: Operating Principles, Technology, and System Applications. Prentice-Hall, Inc, Kensington, NSW (1982)Google Scholar
  27. 27.
    U. S. Department of Energy, Energy Information Administration: International Energy Outlook 2008 (DOE/EIA-0484). Washington (2008)Google Scholar
  28. 28.
    Greentech Media and the Prometheus Institute: PV Technology, Production and Cost, 2009 Forecast: The Anatomy of a Shakeout. Cambridge (2008)Google Scholar
  29. 29.
    Solarbuzz: Marketbuzz 2009: Annual World Solar PV Market Report. San Francisco (2009)Google Scholar
  30. 30.
    Bauman, R.P.: Modern Thermodynamics with Statistical Mechanics. Macmillan Publishing Company, New York (2003)Google Scholar
  31. 31.
    Akkerman, I., Janssen, M., Rocha, J., Wijffels, R.H.: Photobiological hydrogen production: photochemical efficiency and bioreactor design. Int. J. Hydrogen Energy 27, 1195–1208 (2002)Google Scholar
  32. 32.
    Zaborsky, O.R.: Biohydrogen. Plenum, New York (1998)Google Scholar
  33. 33.
    Funk, J.E., Reinstrom, R.M.: Energy requirements in production of hydrogen from water. Ind. Eng. Chem. Process Des. Dev. 5, 336–342 (1966)Google Scholar
  34. 34.
    Minggu, L.J., Daud, W.R.W., Kassim, M.B.: An overview of photocells and photoreactors for photoelectrochemical water splitting. Int. J. Hydrogen Energy 35, 5233–5244 (2010)Google Scholar
  35. 35.
    James, B.D., Baum, G.N., Perez, J., Baum, K.N.: Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. Directed Technologies, Inc. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pec_technoeconomic_analysis.pdf (2009). Accessed 11 Mar 2011
  36. 36.
    Ruth, M., Laffen, M., and Timbario, T.A.: NREL technical report (NREL/BK-6A1-46676). Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios. September 2009Google Scholar
  37. 37.
    NREL Technical Report (NREL/TP-6A1-46612): Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis. September 2009Google Scholar
  38. 38.
    DOE EERE Fuel Cells Technologies Program: Multi-Year Research, Development and Demonstration Plan: Planned Program Activities for 2005–2015. http://www1.eereenergy.gov/hydrogenandfuelcells/mypp/. April 2009
  39. 39.
    Kelly, N.A., Gibson, T.L.: Solar energy concentrating reactors for hydrogen production by photoelectrochemical water splitting. Int. J. Hydrogen Energy 33, 6420–6643 (2008)Google Scholar
  40. 40.
    Mavroides, J.G., Kafalas, J.A., Kolesar, D.F.: Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)Google Scholar
  41. 41.
    Bard, A.J., Faulknerk, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (2000)Google Scholar
  42. 42.
    Bockris, J.O.M., Reddy, A.K.N., Gamboa-Aldeco, M.E.: Modern Electrochemistry: Fundamentals of Electrodics, vol. 2a. Springer, New York (2001)Google Scholar
  43. 43.
    Memming, R.: Semiconductor Electrochemistry. Wiley-VCH, Weinheim (2001)Google Scholar
  44. 44.
    Lipkowski, J., Ross, P.N.: Electrochemistry of Novel Materials. VCH Publishers, New York (1994)Google Scholar
  45. 45.
    Gellings, P.J., Bouwmeester, H.J.M.: The CRC Handbook of Solid State Electrochemistry. CRC, Boca Raton (1997)Google Scholar
  46. 46.
    Nozik, A.J., Memming, R.: Physical chemistry of the semiconductor–liquid interface. J. Phys. Chem. 100, 13061–13078 (1996)Google Scholar
  47. 47.
    Gerischer, H.: Solar photoelectrolysis with semiconductor electrodes. In: Seraphin, B.O. (ed.) Solar Energy Conversion, Solid-State Physics Aspects, pp. 115–172. Springer-Verlag, New York (1979)Google Scholar
  48. 48.
    Gerischer, H.: Physical Chemistry: An Advanced Treatise, vol. 9A. Academic, New York (1970)Google Scholar
  49. 49.
    Gerischer, H.: The impact of semiconductors on the concept of electrochemistry. Electrochim. Acta 35, 1677–1690 (1990)Google Scholar
  50. 50.
    Miller, E.L.: Solar hydrogen production by photoelectrochemical water splitting: the promise and challenge. In: Vayssieres, L. (ed.) On Solar Hydrogen and Nanotechnology, pp. 3–35. Wiley, Asia (2009)Google Scholar
  51. 51.
    Lee, K., Nam, W.S., Han, G.Y.: Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study. Int. J. Hydrogen Energy 29, 1343–1347 (2004)Google Scholar
  52. 52.
    Marcus, R.J.: Chemical conversion of solar energy. Science 123, 399–405 (1965)Google Scholar
  53. 53.
    Bockris, J.O.M.: Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817–827 (1956)Google Scholar
  54. 54.
    Kanan, M.W., Nocera, D.G.: In Situ Formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008)Google Scholar
  55. 55.
    Dutta, S.: Technology assessment of advanced electrolytic hydrogen production. Int. J. Hydrogen Energy 15, 379–386 (1990)Google Scholar
  56. 56.
    LeRoy, R.L.: Industrial water electrolysis: present and future. Int. J. Hydrogen Energy 8, 401–417 (1983)Google Scholar
  57. 57.
    Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., Dinh, H.N.: Accelerating materials development for photoelectrochemical (PEC) hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010)Google Scholar
  58. 58.
    Parkinson, B.: On the efficiency and stability of photoelectrochemical devices. Acc. Chem. Res. 17, 431–437 (1984)Google Scholar
  59. 59.
    Dohrmann, J.K., Schaaf, N.S.: Energy conversion by photoelectrolysis of water: determination of efficiency by in situ photocalorimetry. J. Phys. Chem. 96, 4558–4563 (1992)Google Scholar
  60. 60.
    Heller, A.: Electrochemical solar cells. Solar Energy 29, 153–162 (1982)Google Scholar
  61. 61.
    Khan, S.U.M., Al-shahry, M., Ingler Jr., W.B.: Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297, 2243–2245 (2002)Google Scholar
  62. 62.
    Emery, K.: Measurements and characterization of solar cell modules. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 701–752. Wiley, New York (2003)Google Scholar
  63. 63.
    NIST Chemistry WebBook: NIST Standard Reference Database Number 69 http://webbook.nist.gov/chemistry/. Accessed 29 Mar 2011
  64. 64.
    Luther, J.: Motivation for photovoltaic application and development. In: Luque, A., Hegedus, S. (eds.) Handbook of Photovoltaic Science and Engineering, pp. 45–60. Wiley, New York (2003)Google Scholar
  65. 65.
    Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Tage, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001)Google Scholar
  66. 66.
    Sze, S.M.: Physics of Semiconductor Devices. Wiley, New York (2006)Google Scholar
  67. 67.
    Neamen, D.A.: Semiconductor Physics and Devices: Basic Principles. McGraw-Hill, New York (2002)Google Scholar
  68. 68.
    Balandin, A.A., Wang, K.L.: Handbook of Semiconductor Nanostructures and Nanodevices (5-Volume Set). American Scientific Publishers, Stevenson Ranch (2006)Google Scholar
  69. 69.
    Muller, R.S., Kamins, T.I.: Device Electronics for Integrated Circuits. Wiley, New York (2002)Google Scholar
  70. 70.
    Yu, P.Y., Cardona, M.: Fundamentals of Semiconductors: Physics and Materials Properties. Springer, New York (2004)Google Scholar
  71. 71.
    Mussini, T., Longhi, P.: Chlorine. In: Bard, A.J., Parsons, R., Jordan, J. (eds.) Standard Potentials in Aqueous Solution, pp. 70–77. IUPAC, New York (1985)Google Scholar
  72. 72.
    Tan, M.X., Kenyon, C.N., Krulger, O., Lewis, N.S.: Behavior of Si photoelectrodes under high level injection conditions. 1. Steady-state current–voltage properties and quasi-fermi level positions under illumination. J. Phys. Chem. B 101, 2830–2839 (1997)Google Scholar
  73. 73.
    Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.: Optimization of hybrid photoelectrodes for solar water splitting. Electrochem. Solid-State Lett. 8, A247–A249 (2005)Google Scholar
  74. 74.
    Hanna, M.C., Nozik, A.J.: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. App. Phys. 100, 074510 (2006)Google Scholar
  75. 75.
    Ross, R.T., Hsiao, T.L.: Limits on the yield of photochemical solar energy conversion. J. Appl. Phys. 48, 4783–4785 (1977)Google Scholar
  76. 76.
    Bolton, J.R., Haught, A.F., Ross, R.T.: Photochemical energy storage: an analysis of limits. In: Connolly, J.S. (ed.) Photochemical Conversion and Storage of Solar Energy, pp. 297–330. Academic, New York (1981)Google Scholar
  77. 77.
    Bolton, J.R., Strickler, S.J., Connolly, J.S.: Limiting and realizable efficiencies of solar photolysis of water. Nature 316, 495–500 (1985)Google Scholar
  78. 78.
    Weber, M.F., Dignam, M.J.: Splitting water with semiconducting photoelectrodes – efficiency considerations. Int. J. Hydrogen Energy 11, 225 (1986)Google Scholar
  79. 79.
    Archer, M.D., Bolton, J.R.: Requirements for ideal performance of photochemical and photovoltaic solar energy converters. J. Phys. Chem. 94, 8028–8036 (1990)Google Scholar
  80. 80.
    Bolton, J.R.: Solar photoproduction of hydrogen: a review. Solar Energy 57, 37 (1996)Google Scholar
  81. 81.
    Licht, S.: Multiple band gap semiconductor/electrolyte solar energy conversion. Phys. Chem. B 105, 6281–6294 (2001)Google Scholar
  82. 82.
    Rocheleau, R.E., Miller, E.L.: Photoelectrochemical production of hydrogen: engineering loss analysis. Int. J. Hydrogen Energy 22, 771–782 (1997)Google Scholar
  83. 83.
    Ellis, A.B., Kaiser, S.W., Wrighton, M.S.: Semiconducting potassium tantalate electrodes. J. Phys. Chem. 80, 1325–1328 (1976)Google Scholar
  84. 84.
    Green, M.A.: Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer-Verlag, Heidelberg (2003)Google Scholar
  85. 85.
    Yamaguchi, M.: Super-high-efficiency multi-junction solar cells. Prog. Photovolt. Res. Appl. 13, 125 (2005)Google Scholar
  86. 86.
    King, R.R. et al: Advances in High-Efficiency III-V Multijunction Solar Cells. Adv. Opto-Electr. Article ID 29523, 8 pages (2007)Google Scholar
  87. 87.
    Press Release: Spectrolab solar cell breaks 40% efficiency barrier. 7 December 2006. http://www.insidegreentech.com/node/454. Accessed 29 Mar 2011
  88. 88.
    Guter, W., et al.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223504 (2009)Google Scholar
  89. 89.
    Swinehart, D.F.: The Beer–Lambert law. J. Chem. Educ. 39, 333 (1962)Google Scholar
  90. 90.
    López, N., Reichertz, L.A., Yu, K.M., Campman, K., Walukiewicz, W.: Engineering the electronic band structure for multiband solar cells. Phys. Rev. Lett. 106, 028701 (2011)Google Scholar
  91. 91.
    Baruch, P., De Vos, A., Landsberg, P.T., Parrott, J.E.: On some thermodynamic aspects of photovoltaic solar energy conversion. Solar Energy Mater. Solar Cells 36, 201–222 (1995)Google Scholar
  92. 92.
    Fonash, S.: Solar Cell Device Physics. Academic, New York (1982)Google Scholar
  93. 93.
    Smestad, G.P.: Optoelectronics of Solar Cells. SPIE, Bellingham (2002)Google Scholar
  94. 94.
    Yang, J., Yan, B., Guha, S.: Amorphous and nanocrystalline silicon-based multi-junction solar cells. Thin Solid Films 487, 162–169 (2005)Google Scholar
  95. 95.
    Nishiwaki, S., Siebentritt, S., Walk, P., Lux-Steiner, M.C.: A stacked chalcopyrite thin-film tandem solar cell with 1.2 V open-circuit voltage. Prog. Photovolt. Res. Appl. 11, 243–248 (2003)Google Scholar
  96. 96.
    Arai, T., Konishi, Y., Iwasaki, Y., Sugihara, H., Sayama, K.: High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors. J. Comb. Chem. 9, 574–581 (2007)Google Scholar
  97. 97.
    Kusama, H., Wang, N., Miseki, Y., Sayama, K.: Combinatorial search for iron/titanium-based ternary oxides with a visible-light response. J. Comb. Chem. 12, 356–362 (2010)Google Scholar
  98. 98.
    Jianghua, H., Parkinson, B.A.: A combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. J. Comb. Chem. 13(4), 399–404 (2011)Google Scholar
  99. 99.
    Woodhouse, M., Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197–210 (2009)Google Scholar
  100. 100.
    Burnett, B.: The Basic Physics and Design of III-V Multijunction Solar Cells. NREL, Golden (2002)Google Scholar
  101. 101.
    Yamaguchi, M.: III–V compound multi-junction solar cells: present and future. Solar Energy Mater. Solar Cells 75, 261–269 (2003)Google Scholar
  102. 102.
    Wolf, M.: Limitations and possibilities for improvement of photovoltaic solar energy converters. Proc. Inst. Radio Eng. 48, 1246–1263 (1960)Google Scholar
  103. 103.
    Poortmans, J., Arkhipov, V.: Thin film solar cells: fabrication, characterization and applications. Wiley, Hoboken, NJ (2006)Google Scholar
  104. 104.
    The Basic Physics and Design of III-V Multijunction Solar Cells http://photochemistry.epfl.ch/EDEY/NREL.pdf. Accessed 6 Oct 2011
  105. 105.
    Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)Google Scholar
  106. 106.
    Gibson, T.L., Kelly, N.A.: Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices. Int. J. Hydrogen Energy 35, 900–911 (2010)Google Scholar
  107. 107.
    Ingler, W.B., Khan, S.U.M.: A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem. Solid State Lett. 9, G144–G146 (2006)Google Scholar
  108. 108.
    Miller, E.L., Rocheleau, R.E., Deng, X.M.: Design considerations for a hybrid amorphous silicon/photoelectrochemical multijunction cell for hydrogen production. Int. J. Hydrogen Energy 28, 615–623 (2003)Google Scholar
  109. 109.
    Zhu, F., Hu, J., Kunrath, A., Matulionis, I., Marsen, B., Cole, B., Miller, E.L., Madan, A.: a-SiC:H films used as photoelectrodes in a hybrid, thin-film silicon photoelectrochemical (PEC) Cell for progress toward 10% solar-to hydrogen efficiency. Sol. Hydrogen Nanotechnol. Proc. SPIE 6650, 66500S (2007)Google Scholar
  110. 110.
    Santato, C., Ulmann, M., Augustynski, J.: Photoelectrochemical properties of nanostructured tungsten trioxide films. J. Phys. Chem. B 105, 936–940 (2001)Google Scholar
  111. 111.
    Arakawa, H., Shiraishi, C., Tatemoto, M., Kishida, H., Usui, D., Suma, A., Takamisawa, A., Yamaguchi, T.: Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc. SPIE 6650, 665003 (2007). doi: 10.1117/12.773366 Google Scholar
  112. 112.
    Hu, J., Zhu, F., Matulionis, I., Kunrath, A., Deutsch, T., Kuritzky, L., Miller, E.L., Madan, A.: Solar-to-hydrogen photovoltaic/photoelectrochemical devices using amorphous silicon carbide as the photoelectrode. 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1–5 September 2008Google Scholar
  113. 113.
    Matulionis, I., Zhu, F., Hu, J., Gallon, J., Kunrath, A., Miller, E.L., Marsen, B., Madan, A.: Development of a corrosion-resistant amorphous silicon carbide photoelectrode for solar-to-hydrogen photovoltaic/photoelectrochemical devices. SPIE Solar Energy and Hydrogen Conference, San Diego, USA, 10–14 August 2008Google Scholar
  114. 114.
    Stavrides, A., Kunrath, A., Hu, J., Treglio, R., Feldman, A., Marsen, B., Cole, B., Miller, E.L., Madan, A.: Use of amorphous silicon tandem junction solar cells for hydrogen production in a photoelectrochemical cell. SPIE Optics & Photonics Conference, San Diego, USA, 13–17 August 2006Google Scholar
  115. 115.
    Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., Domen, K.: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ < 500 nm). Chem. Lett. 37, 138–139 (2008)Google Scholar
  116. 116.
    Arakawa, H., Zou, Z., Sayama, K., Abe, R.: Direct water splitting by new oxide semiconductor photocatalysts under visible light irradiation. Pure Appl. Chem. 79, 1917–1927 (2007)Google Scholar
  117. 117.
    Miller, E.L., Marsen, B., Cole, B., Lum, M.: Low-temperature reactively sputtered tungsten oxide films for solar-powered water splitting applications. Electrochem. Solid State Lett. 9, G248–G250 (2006)Google Scholar
  118. 118.
    Yan, Y., Wei, S.-H.: Doping asymmetry in wide-bandgap semiconductors: origins and solutions. Phys. Stat. Sol. B 245, 641 (2008)Google Scholar
  119. 119.
    Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298–2303 (2008)Google Scholar
  120. 120.
    Cole, B., Marsen, B., Miller, E.L., Yan, Y., To, B., Jones, K., Al-Jassim, M.M.: Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting. J. Phys. Chem. C 112, 5213–5220 (2008)Google Scholar
  121. 121.
    Honga, S.J., Juna, H., Borsea, P.H., Lee, J.S.: Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. Int. J. Hydrogen Energy 34, 3234–3242 (2009)Google Scholar
  122. 122.
    Miller, E.L., Paluselli, D., Marsen, B., Rocheleau, R.E.: Low-temperature reactively sputtered iron oxide for thin film devices. Thin Solid Films 466, 307–313 (2004)Google Scholar
  123. 123.
    Duret, A., Grätzel, M.: Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005)Google Scholar
  124. 124.
    Hu, Y.-S., Kleiman-Shwarsctein, A., Forman Hazen, A.J., Park, J.N., McFarland, E.W.: Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 20, 3803–3805 (2008)Google Scholar
  125. 125.
    Kleiman-Shwarsctein, A., Hu, Y.-S., Forman, A.J., Stucky, G.D., McFarland, E.W.: Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 112, 15900–15907 (2008)Google Scholar
  126. 126.
    Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006)Google Scholar
  127. 127.
    Berglund, S.P., Flaherty, D.W., Hahn, N.T., Bard, A.J., Mullins, C.B.: Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J. Phys. Chem. C 115, 3794–3802 (2011)Google Scholar
  128. 128.
    Liang, Y., Kleijn, S.J., Mooij, L.P.A., Van de Krol, R.: Defect properties and photoelectrochemical performance of BiVO4 photoanodes. 216th ECS Meeting, Abstract #1172 (2009)Google Scholar
  129. 129.
    Enache, C.S., Lloyd, D., Damen, M.R., Schoonman, J., Van de Krol, R.: Photo-electrochemical properties of thin-film InVO4 photoanodes: the role of deep donor state. J. Phys. Chem. C 113, 19351–19360 (2009)Google Scholar
  130. 130.
    Chen, X., Liu, L., Yu, P.Y., Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011)Google Scholar
  131. 131.
    Yae, S., Kobayashi, T., Abe, M., Nasu, N., Fukumuro, N., Ogawa, S., Yoshida, N., Nonomura, S., Nakato, Y., Matsuda, H.: Solar to chemical conversion using metal nanoparticle modified microcrystalline silicon thin film photoelectrode. Solar Energy Mater. Solar Cells 91, 224–229 (2007)Google Scholar
  132. 132.
    Sebastian, P.J., Mathews, N.R., Mathew, X., Pattabi, M., Turner, J.: Photoelectrochemical characterization of SiC. Int J. Hydrogen Energy 26, 123–125 (2001)Google Scholar
  133. 133.
    Repins, I., Contreras, M.A., Egaas, B., DeHart, C., Scharf, J., Perkins, C.L., To, B., Noufi, R.: 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog. Photovolt. Res. Appl. 16, 235 (2008)Google Scholar
  134. 134.
    Bär, M., Weinhardt, L., Pookpanratana, S., Heske, C., Nishiwaki, S., Shafarman, W., Fuchs, O., Blum, M., Yang, W., Denlinger, J.D.: Depth-dependent band gap energies in Cu(In, Ga)(S, Se)2 thin films. Appl. Phys. Lett. 93, 244103 (2008)Google Scholar
  135. 135.
    Bär, M., Bohne, W., Röhrich, J., Strub, E., Lindner, S., Lux-Steiner, M.C., Fischer, Ch-H: Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient. J. Appl. Phys. 96, 3857 (2004)Google Scholar
  136. 136.
    Bär, M., Weinhardt, L., Heske, C., Nishiwaki, S., Shafarman, W.: Chemical structures of the Cu(In, Ga)Se2/Mo and Cu(In, Ga)(S, Se)2/Mo interfaces. Phys. Rev. B 78, 075404 (2008)Google Scholar
  137. 137.
    Marsen, B., Cole, B., Miller, E.L.: Photoelectrolysis of water using thin copper gallium diselenide electrodes. Solar Energy Mater. Solar Cells 92, 1054–1058 (2008)Google Scholar
  138. 138.
    Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., Chorkendorff, I.: Identifying the active site: atomic-scale imaging and ambient reactivity of MoS2 nanocatalysts. Science 317, 100–102 (2007)Google Scholar
  139. 139.
    Maiolo, J.R.I.I.I., Atwater, H.A., Lewis, N.S.: Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C 112, 6194–6201 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Eric L. Miller
    • 1
    Email author
  • Alex DeAngelis
    • 2
  • Stewart Mallory
    • 2
  1. 1.U.S. Department of EnergyWashingtonUSA
  2. 2.University of Hawaii at ManoaHonouluUSA

Personalised recommendations