Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates

  • Elena Ibañez
  • Miguel Herrero
  • Jose A. Mendiola
  • María Castro-Puyana
Chapter

Abstract

The occurrence and incidence of different diseases such as cancer, cardiovascular diseases, obesity, and diabetes may be related to the consumption of high calorie calorie-containing diets combined with sedentary lifestyles. The concept of functional foods first appeared in Japan where it was considered to be a tool to promote health and well-being. In 1992, the Japanese government established a policy of “Foods of Specific Health Uses” (FOSHU). This concept was further developed in Europe within the “Functional Food Science in Europe” (FUFOSE) project supported by the European Commission (EC) and co-ordinated by the International Life Sciences Institute (ILSI). Several interesting points were observed at the end of this project (Bellisle, F., A.T. Diplock, G. Hornstra, B. Koletzko, M. Roberfroid, S. Salminen, et al. 1998. Functional food science in Europe. British Journal of Nutrition 80:1–193; Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: Consensus document. British Journal of Nutrition 81:S1–S27), including a definition of a functional food as “a food which is demonstrated to positively affect one or more physiological functions, so that it is able to increase the well-being and/or to reduce the risk to suffer a disease” (Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: Consensus document. British Journal of Nutrition 81:S1–S27). This definition implies that a functional food must maintain the shape of the food (thereby excluding pills and capsules) and that the functional food must impart a physiological effect following consumption that is above and beyond any observed nutritional effects.

Keywords

Chlorophyll Chitosan Alginate Quercetin Triglyceride 

References

  1. Bellisle, F., A.T. Diplock, G. Hornstra, B. Koletzko, M. Roberfroid, S. Salminen, et al. 1998. Functional food science in Europe. British Journal of Nutrition 80: 1–193.Google Scholar
  2. Diplock, A.T., P.J. Agget, M. Ashwell, F. Bornet, E.B. Fern, and M.B. Roberfroid. 1999. Scientific concepts of functional foods in Europe: consensus document. British Journal of Nutrition 81: S1–S27.Google Scholar
  3. Plaza, M., M. Herrero, A. Cifuentes, and E. Ibañez. 2009. Innovative natural functional ingredients from Microalgae. Journal of Agricultural and Food Chemistry 57: 7159–7170.PubMedGoogle Scholar
  4. Plaza, M., A. Cifuentes, and E. Ibañez. 2008. In the search of new functional food ingredients from algae. Trends in Food Science & Technology 19: 31–39.Google Scholar
  5. Kadam, S.U., and P. Prabhasankar. 2010. Marine foods as functional ingredients in bakery and pasta products. Food Research International 43: 1975–1980.Google Scholar
  6. Kim, S.K., and I. Wijesekara. 2010. Development and biological activities of marine-derived bioactive peptides: a review. Journal of Functional Foods 2: 1–9.Google Scholar
  7. Wollgast, J., and E. Anklam. 2000. Review on polyphenols in Theobroma cacao: changes in composition during the manufacture of chocolate and methodology for identification and quantification. Food Research International 33: 423–447.Google Scholar
  8. Madhavi, D.V., S.S. Despande, and D.K. Salunkhe. 1996. Food antioxidants. New York: Marcel Dekker.Google Scholar
  9. Bravo, L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews 56: 317–333.PubMedGoogle Scholar
  10. Wijesekara, I., N.Y. Yoon, and S.K. Kim. 2010. Phlorotannins from Ecklonia cava (Phaeophyceae): biological activities and potential health benefits. BioFactors 36: 408–414.PubMedGoogle Scholar
  11. Nagayama, K., Y. Iwamura, T. Shibata, I. Hirayama, and T. Nakamura. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy 50: 889–893.PubMedGoogle Scholar
  12. Kang, K., Y. Park, H.J. Hwang, S.H. Kim, J.G. Lee, and H.C. Shin. 2003. Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agent against vascular risk factors. Archives of Pharmacal Research 26: 286–293.PubMedGoogle Scholar
  13. Artan, M., Y. Li, F. Karadeniz, S.H. Lee, M.M. Kim, and S.K. Kim. 2008. Anti-HIV-1 activity of phloroglucinol derivative, 6, 6′-bieckol, from Ecklonia cava. Bioorganic & Medicinal Chemistry 16: 7921–7926.Google Scholar
  14. Kong, C.S., J.A. Kim, N.Y. Yoon, and S.K. Kim. 2009. Induction of apoptosis by phloroglucinol derivative from Ecklonia cava in MCF-7 human breast cancer cells. Food and Chemical Toxicology 47: 1653–1658.PubMedGoogle Scholar
  15. Eide, I., S. Myklestad, and S. Melson. 1980. Longterm uptake and release of heavy metals by Ascophyllum nodosum (L.). Environmental Pollution 23: 19–28.Google Scholar
  16. Lee, S.H., Y. Li, F. Karadeniz, M.M. Kim, and S.K. Kim. 2009. α-Glycosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food and Agriculture 89: 1552–1558.Google Scholar
  17. Jung, H.A., S.K. Hyun, H.R. Kim, and J.S. Choi. 2006. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Science 72: 1292–1299.Google Scholar
  18. Yoon, N.Y., S.H. Lee, Y. Li, and S.K. Kim. 2009. Phlorotannins from Ishige okamurae and their acetyl- and butyry-lcholinesterase inhibitory effects. Journal of Functional Foods 1: 331–335.Google Scholar
  19. Li, Y., Z.J. Qian, B.M. Ryu, S.H. Lee, M.M. Kim, and S.K. Kim. 2009. Chemical components and its antioxidant properties in vitro: an edible marine brown alga, Ecklonia cava. Bioorganic & Medicinal Chemistry 17: 1963–1973.Google Scholar
  20. Duan, X.J., W.W. Zhang, X.M. Li, and B.G. Wang. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chemistry 95: 37–43.Google Scholar
  21. De Spirt, S., K. Lutter, and W. Stahl. 2010. Carotenoids in photooxidative stress. Current Nutrition & Food Science 6: 36–43.Google Scholar
  22. Silberstein, J.L., and J.K. Parsons. 2010. Evidence-based principles of bladder cancer and diet. Current Nutrition & Food Science 6: 2–12.Google Scholar
  23. Riccioni, G., B. Mancini, E. Di Ilio, T. Bucciarelli, and N. D’Orazio. 2008. Protective effect of lycopene in cardiovascular disease. European Review for Medical and Pharmacological Sciences 12: 183–190.PubMedGoogle Scholar
  24. Snodderly, M.D. 1995. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. American Journal of Clinical Nutrition 62: S1448–S1461.Google Scholar
  25. Zhu, Y.H., and J.G. Jiang. 2008. Continuous cultivation of Dunaliella salina in photobioreactor for the production of β-carotene. European Food Research and Technology 227: 953–959.Google Scholar
  26. Kotate-Nara, E., M. Kushiro, H. Zhang, T. Sagawara, K. Miyashita, and A. Nagao. 2001. Carotenoids affect proliferation of human prostate cancer cells. Journal of Nutrition 131: 3303–3306.Google Scholar
  27. Hosokawa, M., S. Wanezaki, K. Miyauchi, H. Kurihara, H. Kohno, J. Kawabata, et al. 1999. Apoptosis inducing effect of fucoxanthin on human leukemia cell HL-60. Food Science and Technology Research 5: 243–246.Google Scholar
  28. Shiratori, K., K. Ohgami, I. Ilieva, X.H. Jin, Y. Koyama, K. Miyashita, et al. 2005. Effects of fucoxanthin on lipopolysaccaride-induced inflammation in vitro and in vivo. Experimental Eye Research 81: 422–428.PubMedGoogle Scholar
  29. Maeda, H., M. Hosokawa, T. Sashima, and K. Miyashita. 2007. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry 55: 7701–7706.PubMedGoogle Scholar
  30. Sachindra, N.M., E. Sato, H. Maeda, M. Hosokawa, Y. Niwano, M. Kohno, et al. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry 55: 8516–8522.PubMedGoogle Scholar
  31. Yuan, J.P., and F. Chen. 2000. Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the alga Haematococcus pluvialis. Food Chemistry 68: 443–448.Google Scholar
  32. Higuera-Ciapara, I., L. Felix-Valenzuela, and F.M. Goycoolea. 2006. Astaxanthin: A review of its chemistry and applications. Critical Reviews in Food Science and Nutrition 46: 185–196.PubMedGoogle Scholar
  33. Bruno, A., C. Rossi, G. Marcolongo, A. Di Lena, A. Venzo, C.P. Berrie, et al. 2005. Selective in vivo anti-inflammatory action of the galactolipid monogalactosyldiacylglycerol. European Journal of Pharmacology 524: 159–168.PubMedGoogle Scholar
  34. Larsen, E., A. Kharazmi, L.P. Christensen, and S.B. Christensen. 2003. An antiinflammatory galactolipid from rose hip (Rosa canina) that inhibits chemotaxis of human peripheral blood neutrophils in vitro. Journal of Natural Products 66: 994–995.PubMedGoogle Scholar
  35. Calzolari, I., S. Fumagalli, N. Marchionni, and M. Di Bari. 2009. Polyunsaturated fatty acids and cardiovascular disease. Current Pharmaceutical Design 15: 4149–4156.Google Scholar
  36. Schuchardt, J.P., M. Huss, M. Stauss-Grabo, and A. Hahn. 2010. Significance of long-chain ­polyunsaturated fatty acids (PUFAs) for the development and behaviour of children. European Journal of Pediatrics 169: 149–164.PubMedGoogle Scholar
  37. Zuliani, G., M. Galvani, E. Leitersdorf, S. Volpato, M. Cavelieri, and R. Fellin. 2009. The role of polyunsaturated fatty acids (PUFA) in the treatment of dyslipidemias. Current Pharmaceutical Design 15: 4173–4185.Google Scholar
  38. Sahena, F., I.S.M. Zaidul, S. Jinap, N. Saari, H.A. Jahurul, K.A. Abbas, et al. 2009. PUFAs in fish: extraction, fractionation, importance in health. Comprehensive Reviews in Food Science and Food Safety 8: 59–74.Google Scholar
  39. Wu, T.H., and P.J. Bechtel. 2008. Salmon by-product storage and oil extraction. Food Chemistry 111: 868–871.Google Scholar
  40. Juárez, M., A. Juárez, N. Aldai, C. Avilés, and O. Polvillo. 2010. Validation of a gas-liquid chromatographic method for analysing samples rich in long chain n-3 polyunsaturated fatty acids: application to seafood. Journal of Food Composition and Analysis 23: 665–670.Google Scholar
  41. Francavilla, M., P. Trotta, and R. Luque. 2010. Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresource Technology 101: 4144–4150.PubMedGoogle Scholar
  42. Cardozo, K.H.M., T. Guaratini, M.P. Barros, V.R. Falcão, A.P. Tonon, N.P. Lopes, et al. 2007. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 146: 60–78.PubMedGoogle Scholar
  43. Kanazawa, A. 2001. Sterols in marine invertebrates. Fisheries Science 67: 997–1007.Google Scholar
  44. Li, B., F. Lu, X. Wei, and R. Zhao. 2008. Fucoidan: Structure and bioactivity. Molecules 13: 1671–1695.PubMedGoogle Scholar
  45. Qi, H., Q. Zhang, T. Zhao, R. Chen, H. Zhang, X. Niu, et al. 2005. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) invitro. International Journal of Biological Macromolecules 37: 195–199.PubMedGoogle Scholar
  46. Ngo, D.H., I. Wijesekara, T.S. Vo, Q.V. Ta, and S.V. Kim. 2011. Marine food-derived functional ingredients as potential antioxidants in the food industry: an overview. Food Research International 44: 523–529.Google Scholar
  47. Liu, B., W.S. Liu, B.Q. Han, and Y.Y. Sun. 2007. Antidiabetic effects of chitooligosaccharides on pancreatic islet cells in streptozotocin-induced diabetic rats. World Journal of Gastroenterology 13: 725–731.PubMedGoogle Scholar
  48. Liao, F.H., M.J. Shieh, N.C. Chang, and Y.C. Chien. 2007. Chitosan supplementation lowers serum lipids and maintains normal calcium, magnesium, and iron status in hyperlipidemic patients. Nutrition Research 27: 146–151.Google Scholar
  49. Muzzarelli, R.A.A., P. Morganti, G. Morganti, P. Palombo, M. Palombo, G. Biagini, et al. 2007. Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydrate Polymers 70: 274–284.Google Scholar
  50. Bhat, B.V., N.W. Gaikwad, and K.M. Madyastha. 1998. Hepatoprotective effect of C-phycocyanin: protection for carbon tetrachloride and R-(+)-pulegone-mediated hepatotoxicty in rats. Biochemical and Biophysical Research Communications 249: 428–431.Google Scholar
  51. Romay, C.H., R. Gonzalez, N. Ledón, D. Remirez, and V. Rimbau. 2003. C-Phycocyanin; Abiliprotein with antioxidante, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science 4: 207–216.Google Scholar
  52. Bhat, B.V., and K.M. Madyastha. 2000. C-Phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochemical and Biophysical Research Communications 275: 20–25.PubMedGoogle Scholar
  53. Moraes, C.C., J.F. De Medeiros Burkert, and S.J. Kalil. 2010. C-phycocyanin extraction process for large-scale use. Journal of Food Biochemistry 34: 133–148.Google Scholar
  54. Patil, G., S. Chethana, M.C. Madhusudhan, and K.S.M.S. Raghavarao. 2008. Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresource Technology 99: 7393–7396.PubMedGoogle Scholar
  55. Byun, H.G., J.K. Lee, H.G. Park, J.K. Jeon, and S.K. Kim. 2009. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis. Process Biochemistry 44: 842–846.Google Scholar
  56. Majors, R., and D. Raynie. 2011. The greening of the chromatography laboratory. LCGC Europe. 24: 72–78.Google Scholar
  57. Anastas, P.T., and J.C. Warner. 1998. Green chemistry: theory and practice. New York: Oxford University Press.Google Scholar
  58. Anastas, P.T., and J.B. Zimmerman. 2003. Design through the twelve principles of green engineering. Environmental Science and Technology 37: 94A–101A.PubMedGoogle Scholar
  59. Hosikian, A., Lim, S., Halim, R., and M.K. Danquah. 2010. Chlorophyll extraction from Microalgae: a Review on the process engineering aspects. International Journal of Chemical Engineering. Article ID 391632, 11 pages. doi: 10.1155/2010/391632.
  60. Mendiola, J.A., M. Herrero, A. Cifuentes, and E. Ibáñez. 2007a. Use of compressed fluids for sample preparation: food applications. Journal of Chromatography. A 1152: 234–246.PubMedGoogle Scholar
  61. Herrero, M., A. Cifuentes, and E. Ibáñez. 2006a. Sub- and supercritical fluid extraction of functional ingredients from different natural sources: plants, food-by-products, algae and microalgae: a review. Food Chemistry 98: 136–148.Google Scholar
  62. Björklund, E., C. Sparr-Eskilsson, W. Paul, T. Alan, and P. Colin. 2005. EXTRACTION: supercritical Fluid Extraction. In Encyclopedia of Analytical Science, ed. P. Worsfold, A. Townshend, and C. Poole, 597–604. Oxford: Elsevier.Google Scholar
  63. El Hattab, M., G. Culioli, L. Piovetti, S.E. Chitour, and R.J. Valls. 2007. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. Journal of Chromatography. A 1143: 1–7.PubMedGoogle Scholar
  64. Mendiola, J.A., S. Santoyo, A. Cifuentes, G. Reglero, E. Ibáñez, and F.J. Señoráns. 2008a. Antimicrobial activity of sub- and supercritical CO2 extracts of the green alga Dunaliella salina. Journal of Food Protection 71: 2138–2143.PubMedGoogle Scholar
  65. Cheung, P.C.K. 1999. Temperature and pressure effects on supercritical carbon dioxide extraction of n  −  3 fatty acids from red seaweed. Food Chemistry 65: 399–403.Google Scholar
  66. Qiuhui, H. 1999. Supercritical carbon dioxide extraction of Spirulina platensis component and removing the stench. Journal of Agricultural and Food Chemistry 47: 2705–2706.PubMedGoogle Scholar
  67. Mendiola, J.A., D. García-Martínez, F.J. Rupérez, P.J. Martín-Álvarez, G. Reglero, A. Cifuentes, et al. 2008b. Enrichment of vitamin E from Spirulina platensis microalga by SFE. Journal of Supercritical Fluids 43: 484–489.Google Scholar
  68. Mendes, R.L., H.L. Fernandes, J.P. Coelho, E.C. Reis, J.M.S. Cabral, J.M. Novais, et al. 1995. Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry 53: 99–103.Google Scholar
  69. Mendiola, J.A., F.R. Marín, S.F. Hernández, B.O. Arredondo, F.J. Señoráns, E. Ibañez, et al. 2008c. Characterization via liquid chromatography coupled to diode array detector and tandem mass spectrometry of supercritical fluid antioxidant extracts of Spirulina platensis microalga. Journal of Separation Science 28: 1031–1038.Google Scholar
  70. Mendes, R.L., B.P. Nobre, M.T. Cardoso, A.P. Pereira, and A.F. Palabra. 2003. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorganica Chimica Acta 356: 328–334.Google Scholar
  71. Klejdus, B., L. Lojková, M. Plaza, M. Šnóblová, and D. Štěrbová. 2010. Hyphenated technique for the extraction and determination of isoflavones in algae: ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography. A 1217(51): 7956–7965.PubMedGoogle Scholar
  72. Wang, H.M., J.L. Pan, C.Y. Chen, C.C. Chiu, M.H. Yang, H.W. Chang, et al. 2010. Identification of anti-lung cancer extract from Chlorella vulgaris C-C by antioxidant property using supercritical carbon dioxide extraction. Process Biochemistry 45: 1865–1872.Google Scholar
  73. Félix-Valenzuela, L., I. Higuera-Ciaparai, and F. Goycoolea-Valencia. 2001. Supercritical CO2/ethanol extraction of astaxanthin from blue crab (callinectes sapidus) shell waste. Journal of Food Process Engineering 24: 101–112.Google Scholar
  74. Yamaguchi, K., M. Murakami, H. Nakano, S. Konosu, T. Kokura, H. Yamamoto, et al. 1986. Supercritical carbon dioxide extraction of oils from Antarctic Krill. Journal of Agricultural and Food Chemistry 34: 904–907.Google Scholar
  75. Charest, D.J., M.O. Balaban, M.R. Marshall, and J.A. Cornell. 2001. Astaxanthin extraction from crawfish shells by supercritical CO2 with ethanol as cosolvent. Journal of Aquatic Food Product Technology 10: 79–93.Google Scholar
  76. Lin, W.-C., J.-T. Chien, and B.-H. Chen. 2005. Determination of carotenoids in spear shrimp shells (Parapenaeopsis hardwickii) by liquid chromatography. Journal of Agricultural and Food Chemistry 53: 5144–5149.PubMedGoogle Scholar
  77. Kang, K.-Y., D.-H. Ahn, G.T. Wilkinson, and B.-S. Chun. 2005a. Extraction of lipids and cholesterol from squid oil with supercritical carbon dioxide. Korean Journal of Chemical Engineering 22: 399–405.Google Scholar
  78. Zhu, B.-W., L. Qin, D.-Y. Zhou, H.-T. Wu, J. Wu, J.-F. Yang, et al. 2010. Extraction of lipid from sea urchin (Strongylocentrotus nudus) gonad by enzyme-assisted aqueous and supercritical carbon dioxide methods. European Food Research and Technology 230: 737–743.Google Scholar
  79. Chun, B.-H., H. Kishimura, H. Kanzawa, S. Klomklao, S. Nalinanon, S. Benjakul, et al. 2010. Application of supercritical carbon dioxide for preparation of starfish phospholipase A2. Process Biochemistry 45: 689–693.Google Scholar
  80. Ferraro, V., I.B. Cruz, R. Ferreira Jorge, F.X. Malcata, M.E. Pintado, and P.M.L. Castro. 2010. Valorization of natural extracts from marine source focused on marine by-products: A review. Food Research International 43: 2221–2233.Google Scholar
  81. Rubio-Rodríguez, N., S. Beltrán, I. Jaime, S.M. de Diego, M.T. Sanz, and J. Rovilla Carballido. 2010. Production of omega-3 polyunsaturated fatty acid concentrates: a review. Innovative Food Science & Emerging Technologies 11: 1–12.Google Scholar
  82. Dunford, N.T., F. Temelli, and E. LeBlanc. 1997. Supercritical CO2 extraction of oil and residual proteins from atlantic mackerel (Scomber scombrus) as affected by moisture content. Journal of Food Science 62: 289–294.Google Scholar
  83. Dunford, N.T., M. Goto, and F. Temelli. 1998. Modeling of oil extraction with supercritical CO2 from Atlantic Mackerel (Scomber scombrus) at different moisture contents. The Journal of Supercritical Fluids 13: 303–309.Google Scholar
  84. Esquível, M.M., N.M. Bandarra, I. Fontan, M.G. Bernardo-Gil, I. Batista, M.L. Nunes, et al. 1997. Supercritical carbon dioxide extraction of sardine Sardina pilchardus oil. LWT-Food Science and Technology 30: 715–720.Google Scholar
  85. Létisse, M., M. Rozières, A. Hiol, M. Sergent, and L. Comeaua. 2006. Enrichment of EPA and DHA from sardine by supercritical fluid extraction without organic modifier I. Optimization of extraction conditions. Journal of Supercritical Fluids 38: 27–36.Google Scholar
  86. Rubio-Rodríguez, N., S.M. de Diego, S. Beltrán, I. Jaime, M.T. Sanz, and J. Rovira. 2008. Supercritical fluid extraction of the omega-3 rich oil contained in hake (Merluccius capensis–Merluccius paradoxus) by-products: study of the influence of process parameters on the extraction yield and oil quality. Journal of Supercritical Fluids 47: 215–226.Google Scholar
  87. Sahena, F., I.S.M. Zaidul, S. Jinap, M.H.A. Jahurul, A. Khatib, and N.A.N. Norulaini. 2010. Extraction of fish oil from the skin of Indian mackerel using supercritical fluids. Journal of Food Engineering 99: 63–69.Google Scholar
  88. Kang, K.-Y., D.-H. Ahn, S.-M. Jung, D.-H. Kim, and B.-S. Chun. 2005b. Separation of protein and fatty acids from tuna viscera using supercritical carbon dioxide. Biotechnology and Bioprocess Engineering 10: 315–321.Google Scholar
  89. Létisse, M., and L. Comeau. 2008. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science 31: 1374–1380.PubMedGoogle Scholar
  90. Chang, L.-H., C.-T. Shen, S.-J. Hsieh, S.-L. Hsu, H.-C. Chang, J. Chieh-Ming, et al. 2008. Recovery and enhancement of unsaturated fatty acids in soft-shelled turtle fish oil using supercritical carbon dioxide and associated catalase release activity. Separation and Purification Technology 64: 213–220.Google Scholar
  91. Fleck, U., C. Tiegs, and G. Brunner. 1998. Fractionation of fatty acid ethyl esters by supercritical CO2: High separation efficiency using an automated countercurrent column. Journal of Supercritical Fluids 14: 67–74.Google Scholar
  92. Perretti, G., A. Motori, E. Bravi, F. Favati, L. Montanari, and P. Fantozzi. 2007. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. Journal of Supercritical Fluids 40: 349–353.Google Scholar
  93. Davarnejad, R., K.M. Kassim, A. Zainal, and S.A. Sata. 2008. Extraction of fish oil by fractionation through supercritical carbon dioxide. Journal of Chemical & Engineering Data 53: 2128–2132.Google Scholar
  94. Riha, V., and G. Brunner. 1999. Phase equilibrium of fish oil ethyl esters with supercritical carbon dioxide. Journal of Supercritical Fluids 15: 33–50.Google Scholar
  95. Riha, V., and G. Brunner. 2000. Separation of fish oil ethyl esters with supercritical carbon dioxide. Journal of Supercritical Fluids 17: 55–64.Google Scholar
  96. Brunner, G. 2000. Fractionation of fats with supercritical carbon dioxide. European Journal of Lipid Science and Technology 102: 240–244.Google Scholar
  97. Espinosa, S., S. Diaz, and E.A. Brignole. 2002. Thermodynamic modeling and process optimization of supercritical fluid fractionation of fish oil fatty acid ethyl esters. Industrial and Engineering Chemistry Research 41: 1516–1527.Google Scholar
  98. Espinosa, S., M.S. Diaz, and E.A. Brignole. 2008. Food additives obtained by supercritical extraction from natural sources. Journal of Supercritical Fluids 45: 213–219.Google Scholar
  99. Gironi, F., and M. Maschietti. 2006. Separation of fish oils ethyl esters by means of supercritical carbon dioxide: thermodynamic analysis and process modelling. Chemical Engineering Science 61: 5114–5126.Google Scholar
  100. Martín, A., and M.J. Cocero. 2007. Mathematical modeling of the fractionation of liquids with supercritical CO2 in a countercurrent packed column. Journal of Supercritical Fluids 39: 304–314.Google Scholar
  101. Catchpole, O.J., J.B. Grey, and K.A. Noermark. 2000. Fractionation of fish oils using supercritical CO2 and CO2_ethanol mixtures. Journal of Supercritical Fluids 19: 25–37.Google Scholar
  102. Sarrade, S.J., G.M. Rios, and M. Carlés. 1998. Supercritical CO2 extraction coupled with nanofiltration separation. Applications to natural products. Separation and Purification Technology 14: 19–25.Google Scholar
  103. Antunes Corrêa, A.P., C. Arantes Peixoto, L.A. Guaraldo Gonçalves, and F.A. Cabral. 2008. Fractionation of fish oil with supercritical carbon dioxide. Journal of Food Engineering 88: 381–387.Google Scholar
  104. Alkio, M., C. González, M. Jäntti, and O. Aaltonen. 2000. Purification of polyunsaturated fatty acid esters from tuna oil with supercritical fluid chromatography. Journal of the American Oil Chemists’ Society 77: 315–321.Google Scholar
  105. Petinello, G., A. Bertucco, P. Pallado, and A. Stassi. 2000. Production of EPA enriched mixtures by supercritical fluid chromatography: From the laboratory scale to the pilot plant. Journal of Supercritical Fluids 19: 51–60.Google Scholar
  106. Nieto, A., F. Borrull, E. Pocurull, and R.M. Marcé. 2010. Pressurized liquid extraction: a useful technique to extract pharmaceuticals and personal-care products from sewage sludge. TrAC Trends in Analytical Chemistry 29: 752–764.Google Scholar
  107. Richter, B.E., B.A. Jones, J.L. Ezzell, N.L. Porter, N. Avdalovic, and C. Pohl. 1996. Accelerated solvent extraction: a technique for sample preparation. Analytical Chemistry 68: 1033–1039.Google Scholar
  108. Breithaupt, D.E. 2004. Simultaneous HPLC determination of carotenoids used as food coloring additives: applicability of accelerated solvent extraction. Food Chemistry 86(3): 449–456.Google Scholar
  109. Herrero, M., L. Jaime, P.J. Martín-Álvarez, A. Cifuentes, and E. Ibáñez. 2006b. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. Journal of Agricultural and Food Chemistry 54: 5597–5603.PubMedGoogle Scholar
  110. Plaza, M., S. Santoyo, L. Jaime, G. Garcia-Blairsy, M. Herrero, F.J. Señorans, et al. 2010a. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis 51: 450–455.PubMedGoogle Scholar
  111. Santoyo, S., I. Rodriguez-Meizoso, A. Cifuentes, L. Jaime, G. García-Blairsy Reina, F.J. Señoráns, et al. 2009. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT — Food Science and Technology 42: 1213–1218.Google Scholar
  112. Herrero, M., P.J. Martín-Álvarez, F.J. Señoráns, A. Cifuentes, and E. Ibáñez. 2005a. Optimization of accelerated solvent extraction of antioxidants from Spirulina platensis microalga. Food Chemistry 93: 417–423.Google Scholar
  113. Herrero, M., M.J. Vicente, A. Cifuentes, and E. Ibáñez. 2007. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract. Rapid Communications in Mass Spectrometry 21: 1729–1738.PubMedGoogle Scholar
  114. Jaime, L., J.A. Mendiola, M. Herrero, C. Soler, S. Santoyo, F.J. Señoráns, et al. 2005. Separation and characterizationof antioxidants from Spirulina platensis microalga combining pressurized liquid extraction, TLC and HPLC-DAD. Journal of Separation Science 28: 2111–2119.PubMedGoogle Scholar
  115. Shang, Y.F., S.M. Kim, W.J. Lee, and B.-H. Um. 2011. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. Journal of Bioscience and Bioengineering 111(2): 237–241.PubMedGoogle Scholar
  116. Plaza, M. 2010. Búsqueda de nuevos ingredientes funcionales naturales procedentes de algas (PhD Thesis), Universidad Autónoma de Madrid, http://hdl.handle.net/10486/5984.
  117. López, A., M. Rico, and A. Rivero. 2011. The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts. Food Chemistry 125(3): 1104–1109.Google Scholar
  118. Onofrejová, L., J. Vašíčková, B. Klejdus, P. Stratil, L. Mišurcová, S. Kráčmar, et al. 2010. Bioactive phenols in algae: the application of pressurized-liquid and solid-phase extraction techniques. Journal of Pharmaceutical and Biomedical Analysis 51(2): 464–470.PubMedGoogle Scholar
  119. Quan, C., and C. Turner. 2009. Extraction of astaxanthin from shrimp waste using pressurized hot ethanol. Chromatographia 70: 247–251.Google Scholar
  120. Rubio, B.K., R.W.M. van Soest, and P. Crews. 2007. Extending the record of meroditerpenes from cacospongia marine sponges. Journal of Natural Products 70: 628–631.PubMedGoogle Scholar
  121. Johnson, T.A., T. Amagata, K.V. Sashidhrar, A.G. Oliver, K. Tenney, T. Matainaho, et al. 2009. The aignopsanes, a new class of sesquiterpenes from selectes chemotypes of the sponge cascospongia mycofijiensis. Organic Letters 11: 1975–1978.PubMedGoogle Scholar
  122. Johnson, T.A., M.V.C. Morgan, N.A. Aratow, S.A. Estee, K.V. Sashidhara, S.T. Loveridge, et al. 2010. Assessing pressurized liquid extraction for the high throughput extraction of marine-sponge-derived natural products. Journal of Natural Products 73: 359–364.PubMedGoogle Scholar
  123. Dodds, E., M.R. McCoy, A. Geldenhuys, L.D. Rea, and J.M. Kennish. 2004. Microscale recovery of total lipids from fish tissues by accelerated solvent extraction. Journal of the American Oil Chemists’ Society 81: 835–840.Google Scholar
  124. Isaac, G., M. Waldebäck, U. Eriksson, G. Odham, and K.E. Markides. 2005. Total lipid extraction of homogenized and intact lean fish muscles using pressurized fluid extraction and batch extraction techniques. Journal of Agricultural and Food Chemistry 53: 5506–5512.PubMedGoogle Scholar
  125. Spiric, A., D. Trbovic, D. Vrabic, J. Djinovic, R. Petronijevic, and V. Matekalo-Sverak. 2010. Statistical evaluation of fatty acid profile and cholesterol content in fish (common carp) lipids obtained by different sample preparation procedures. Analytica Chimica Acta 672: 66–71.PubMedGoogle Scholar
  126. Turner, C., and E. Ibañez. 2011. Pressurized hot water extraction. In Enhancing Extraction Processes in the Food Industry, ed. N. Lebovka, E. Vorobiev, and F. Chemat. Boca Ratón FL: Taylor & Francis Group, LLC. expected September 2011.Google Scholar
  127. Teo, C.C., S.N. Tan, J.W.H. Yong, C.S. Hew, and E.S. Ong. 2010. Pressurized hot water extraction (PHWE). Journal of Chromatography. A 1217: 2484–2494.PubMedGoogle Scholar
  128. Golmohamad, F., M.H. Eikani, and S. Shokrollahzadeh. 2008. Review on extraction of medicinal plants constituents by superheated water. Journal of Medicinal Plants 7: 1–24.Google Scholar
  129. Ong, E.S., J.S.H. Cheong, and D. Goh. 2006. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. Journal of Chromatography. A 1112: 92–102.PubMedGoogle Scholar
  130. Wang, L.J., and C.L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17: 300–312.Google Scholar
  131. King, J.W. 2006. Pressurized water extraction: resources and techniques for optimizing analytical applications. ACS Symposium Series 926: 79–95.Google Scholar
  132. Rodriguez-Meizoso, I., L. Jaime, S. Santoyo, F.J. Señoráns, A. Cifuentes, and E. Ibáñez. 2010. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. Journal of Pharmaceutical and Biomedical Analysis 51(2): 456–463.PubMedGoogle Scholar
  133. Plaza, M., M. Amigo-Benavent, M.D. del Castillo, E. Ibáñez, and M. Herrero. 2010b. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Research International 43(10): 2341–2348.Google Scholar
  134. Herrero, M., C. Simo, E. Ibáñez, and A. Cifuentes. 2005b. Capillary electrophoresis-mass spectrometry of Spirulina platensis proteins obtained by pressurized liquid extraction. Electrophoresis 26: 4215–4224.PubMedGoogle Scholar
  135. Tavakoli, O., and H. Yoshida. 2006a. Conversion of scallop viscera wastes to valuable compounds using sub-critical water. Green Chemistry 8: 100–106.Google Scholar
  136. Yoshida, H., and O. Tavakoli. 2004. Sub-critical water hydrolysis treatment for waste squid entrails and production of amino acids, organic acids, and fatty acids. Journal of Chemical Engineering of Japan 37: 253–260.Google Scholar
  137. Tavakoli, O., and H. Yoshida. 2006b. Squid oil and fat production from squid wasted using subcritical water hydrolysis: free fatty acids and transesterification. Industrial and Engineering Chemistry Research 45: 5675–5680.Google Scholar
  138. Uddin, Md.S., H.-Y. Ahn, H. Kishimura, and B.-S. Chun. 2010. Production of valued materials from squid viscera by supercritical water hydrolysis. Journal of Environmental Biology 31: 675–679.PubMedGoogle Scholar
  139. MD Uddin, S., H.-M. Ahn, H. Kishimura, and B.-S. Chun. 2009. Comparative study of digestive enzymes of squid (Todarodes pacifius) viscera after supercritical carbon dioxide and organic solvent extraction. Biotechnology and Bioprocess Engineering 14: 338–344.Google Scholar
  140. Yoshida, H., M. Terashima, and Y. Takahashi. 1999. Production of organic acids and amino acids from fish meat by subcritical water hydrolysis. Biotechnology Progress 15: 1090–1094.PubMedGoogle Scholar
  141. Yoshida, H., Y. Takahashi, and M. Terashima. 2003. A simplified reaction model for production of oil, amino acids, and organic acids from fish meat by hidrolysis under sub-critical and supercritical conditions. Journal of Chemical Engineering of Japan 36: 441–448.Google Scholar
  142. Kang, K., A.T. Quitain, H. Daimon, R. Noda, N. Goto, H.-Y. Hu, et al. 2001. Optimization of amino acids production from waste fish entrails by hydrolysis in sub- and supercritical water. The Canadian Journal of Chemical Engineering 79: 65–70.Google Scholar
  143. Ying, Z., X. Han, and J. Li. 2011. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry 127: 1273–1279.Google Scholar
  144. Ötles, S. 2009. Handbook of Food Analysis Instruments, 1st ed. Boca Raton: CRC Press Taylor & Francis Group.Google Scholar
  145. Hu, A.J., S. Zhao, H. Liang, T.Q. Qiu, and G. Chen. 2007. Ultrasound assisted supercritical fluid extraction of oil and coixenolide from adlay seed. Ultrasonics Sonochemistry 14: 219–224.PubMedGoogle Scholar
  146. Ganzler, K., A. Salgó, and K. Valkó. 1986. Microwave extraction: a novel sample preparation method for chromatography. Journal of Chromatography. A 371: 299–306.Google Scholar
  147. Worsfold, P., A. Townshend, and C. Poole. 2005. Encyclopedia of Analytical Science, 2nd ed. Boston: Elsevier.Google Scholar
  148. Garcia-Ayuso, L.E., M. Sanchez, A.A. de Fernandez, and C.M.D. Luque De. 1998. Focused microwave-assisted soxhlet: an advantageous tool for sample extraction. Analytical Chemistry 70: 2426–2431.PubMedGoogle Scholar
  149. Pasquet, V., J.R. Chérouvrier, F. Farhat, V. Thiéry, J.M. Piot, J.B. Bérard, et al. 2011. Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochemistry 46(1): 59–67.Google Scholar
  150. Macías-Sánchez, M.D., C. Mantell, M. Rodríguez, O.E. de la Martínez, L.M. Lubián, and O. Montero. 2009. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3): 948–952.PubMedGoogle Scholar
  151. Araujo, G.S., L.J.B.L. Matos, L.R.B. Gonçalves, F.A.N. Fernandes, and W.R.L. Farias. 2011. Bioprospecting for oil producing microalgal strains: evaluation of oil and biomass production for ten microalgal strains. Bioresource Technology 102(8): 5248–5250.PubMedGoogle Scholar
  152. Mendiola, J.A., C.F. Torres, A. Toré, P.J. Martín-Álvarez, S. Santoyo, B.O. Arredondo, et al. 2007b. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. European Food Research and Technology 224(4): 505–510.Google Scholar
  153. Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry 15(5): 898–902.PubMedGoogle Scholar
  154. Batista, A., W. Vetter, and B. Luckas. 2001. Use of focused open vessel microwave-assisted extraction as prelude for the determination of the fatty acid profile of fish – a comparison with results obtained after liquid-liquid extraction according to Bligh and Dyer. European Food Research and Technology 212: 377–384.Google Scholar
  155. Pronyk, C., and G. Mazza. 2009. Design and scale-up of pressurized fluid extractors for food and bioproducts. Review. Journal of Food Engineering 95: 215–226.Google Scholar
  156. del Valle, J.M., and J.C. de la Fuente. 2006. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Critical Reviews in Food Science and Nutrition 46: 131–160.PubMedGoogle Scholar
  157. Meireles, M.A.A. 2003. Supercritical extraction from solid: Process design data (2001–2003). Current Opinion in Solid State and Materials Science 7: 321–330.Google Scholar
  158. Berna, A., A. Tarrega, M. Blasco, and S. Subirats. 2002. Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. Journal of Supercritical Fluids 18: 227–237.Google Scholar
  159. Lagadec, A.J.M., D.J. Miller, A.L. Lilke, and S.B. Hawthorne. 2000. Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon – and pesticide contaminated soil. Environmental Science & Technology 34: 1542–1548.Google Scholar
  160. Terigar, B.G., S. Balasubramanian, C.M. Sabliov, M. Lima, and D. Boldor. 2011. Soybean and rice bran oil extraction in a continuous microwave system: from laboratory- to pilot-scale. Journal of Food Engineering 104: 208–217.Google Scholar
  161. Boonkird, S., C. Phisalaphong, and M. Phisalaphong. 2008. Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrasonics Sonochemistry 15: 1075–1079.PubMedGoogle Scholar
  162. King, J.W., and K. Srinivas. 2009. Multiple unit processing using sub- and supercritical fluids. Journal of Supercritical Fluids 47: 598–610.Google Scholar
  163. Liau, B.H., C.T. Shen, F.P. Liang, S.E. Hong, S.L. Hsu, T.T. Jong, et al. 2010. Supercritical fluids extraction and anti-solvent purification of carotenoids from microalgae and associated bioactivity. Journal of Supercritical Fluids 55: 169–175.Google Scholar
  164. Siriwardhana, N., K.N. Kim, K.W. Lee, S.H. Kim, J.H. Ha, C.B. Song, et al. 2008. Optimisation of hydrophilic antioxidant extraction from Hizikia fusiformis by integrating treatments of enzymes, heat and pH control. International Journal of Food Science and Technology 43: 587–596.Google Scholar
  165. Athukorala, Y., K.N. Kim, and Y.J. Jeon. 2006. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food and Chemical Toxicology 44: 1065–1074.PubMedGoogle Scholar
  166. Moreda-Piñeiro, A., A. Bermejo-Barrera, P. Bermejo-Barrera, J. Moreda-Piñeiro, E. Alonso-Rodriguez, S. Muniategui-Lorenzo, et al. 2007. Feasibility of pressurization to speed up enzymatic hydrolysis of biological materials for multielement determinations. Analytical Chemistry 79: 1797–1805.PubMedGoogle Scholar
  167. Turner, C., P. Turner, G. Jacobson, K. Almgren, M. Waldebäck, P. Sjöberg, et al. 2006. Subcritical water extraction and b-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chemistry 8: 949–959.Google Scholar
  168. Lindahl, S., A. Ekman, S. Khan, C. Wennerberg, P. Borjesson, P.J.R. Sjoberg, et al. 2010. Exploring the possibility of using a thermostable mutant of beta-glucosidase for rapid hydrolysis of quercetin glucosides in hot water. Green Chemistry 12: 159–168.Google Scholar
  169. Heo, S.J., E.J. Park, K.W. Lee, and Y.J. Jeon. 2005. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresource Technology 96: 1613–1623.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Elena Ibañez
    • 1
  • Miguel Herrero
    • 1
  • Jose A. Mendiola
    • 1
  • María Castro-Puyana
    • 1
  1. 1.Bioactivity and Food Analysis DepartmentInstitute of Food Science Research (CIAL-CSIC)MadridSpain

Personalised recommendations