Coefficients of the n-Fold Theta Function and Weyl Group Multiple Dirichlet Series

  • Benjamin Brubaker
  • Daniel Bump
  • Solomon Friedberg
  • Jeffrey Hoffstein
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 9)


We establish a link between certain Whittaker coefficients of the generalized metaplectic theta functions, first studied by Kazhdan and Patterson [Kazhdan and Patterson, Metaplectic forms, Inst. Hautes Études Sci. Publ. Math., (59): 35–142, 1984], and the coefficients of stable Weyl group multiple Dirichlet series defined in [Brubaker, Bump, Friedberg, Weyl group multiple Dirichlet series. II. The stable case. Invent. Math., 165(2):325–355, 2006]. The generalized theta functions are the residues of Eisenstein series on a metaplectic n-fold cover of the general linear group. For n sufficiently large, we consider different Whittaker coefficients for such a theta function which lie in the orbit of Hecke operators at a given prime p. These are shown to be equal (up to an explicit constant) to the p-power supported coefficients of a Weyl group multiple Dirichlet series (MDS). These MDS coefficients are described in terms of the underlying root system; they have also recently been identified as the values of a p-adic Whittaker function attached to an unramified principal series representation on the metaplectic cover of the general linear group.



This work was supported by NSF grants DMS-0844185, DMS-1001079 and DMS-1001326, NSF FRG grants DMS-0652817, DMS-0652609, and DMS-0652312, and by NSA grant H98230-10-1-0183.


  1. 1.
    B. Brubaker, D. Bump, G. Chinta, S. Friedberg, and J. Hoffstein. Weyl group multiple Dirichlet series I. In: Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, Proc. Sympos. Pure Math., 75. Amer. Math. Soc., Providence, R.I., 2006, pp. 91–114.Google Scholar
  2. 2.
    B. Brubaker, D. Bump, and S. Friedberg. Twisted Weyl group multiple Dirichlet series: the stable case. In: Eisenstein series and applications (Gan, Kudla and Tschinkel, eds.). Birkhäuser Progress in Mathematics 258, 2008, pp. 1–26.Google Scholar
  3. 3.
    B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series. II. The stable case. Invent. Math., 165(2):325–355, 2006.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein. Weyl group multiple Dirichlet series III: Eisenstein series and twisted unstable A r. Annals of Mathematics, 166(1):293–316, 2007.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    B. Brubaker, D. Bump, and S. Friedberg. Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory. Annals of Mathematics Studies, Volume 175, Princeton Univ. Press, 2011Google Scholar
  6. 6.
    B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series, Eisenstein series and crystal bases. Annals of Mathematics, 173(2):1081–1120, 2011.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    D. Bump. Lie Groups, Graduate Texts in Mathematics 225. Springer-Verlag, New York, 2004.Google Scholar
  8. 8.
    D. Bump and J. Hoffstein. On Shimura’s correspondence. Duke Math. J., 55(3):661–691, 1987.MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    P. Deligne. Sommes de Gauss cubiques et revêtements de SL(2) [d’après S. J. Patterson]. Sém. Bourbaki (1978/79), Exposé No. 539. In: Springer Lecture Notes 770, 1980, pp. 244–277.Google Scholar
  10. 10.
    C. Eckhardt and S. J. Patterson. On the Fourier coefficients of biquadratic theta series. Proc. London Math. Soc. (3), 64(2):225–264, 1992.Google Scholar
  11. 11.
    S. Friedberg and P. McNamara. in preparation.Google Scholar
  12. 12.
    T. Goetze. Euler products associated to metaplectic automorphic forms on the 3-fold cover of GSp(4). Trans. A.M.S., 350(3):975–1011, 1998.Google Scholar
  13. 13.
    D. R. Heath-Brown and S. J. Patterson. The distribution of Kummer sums at prime arguments. J. Reine Angew. Math., 310:111–130, 1979.MathSciNetMATHGoogle Scholar
  14. 14.
    J. Hoffstein. Eisenstein series and theta functions on the metaplectic group. In: Theta functions: from the classical to the modern (M. Ram Murty, ed.). CRM Proc. Lect. Notes 1, 1993, pp. 65–104.Google Scholar
  15. 15.
    D. A. Kazhdan and S. J. Patterson. Metaplectic forms. Inst. Hautes Études Sci. Publ. Math., (59):35–142, 1984.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    T. Kubota. Some results concerning reciprocity law and real analytic automorphic functions. 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pp. 382–395. Amer. Math. Soc., Providence, R.I., 1971.Google Scholar
  17. 17.
    H. Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup., (4)2:1–62, 1969.Google Scholar
  18. 18.
    P. McNamara. Metaplectic Whittaker functions and crystal bases. Duke Math. J., 156(1): 1–31, 2011.MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    T. Suzuki. Some results on the coefficients of the biquadratic theta series. J. Reine Angew. Math., 340:70–117, 1983.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Benjamin Brubaker
    • 1
  • Daniel Bump
    • 2
  • Solomon Friedberg
    • 3
  • Jeffrey Hoffstein
    • 4
  1. 1.Department of MathematicsMITCambridgeUSA
  2. 2.Department of MathematicsStanford UniversityStanfordUSA
  3. 3.Department of MathematicsBoston CollegeChestnut HillUSA
  4. 4.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations