Algae Oil

  • Gustavo B. Leite
  • Patrick C. HallenbeckEmail author


Over the past 5 years or so, there has been a tremendous interest in developing microalgae as a novel, renewable source of biodiesel. This subject has captured the public interest, with frequent headlines seeming to suggest that cheap renewable “green” oil is just around the corner, as well as attracting significant interest in the investment world, with well over one billion dollars of venture and big oil capital (Mascarelli 2009) being invested in more than one hundred algal biofuels start-ups (Waltz 2009b).


Microalgae Open pond Photobioreactor Dewatering Harvesting Autotrophic Heterotrophic CO2 mitigation 


  1. Abou-Shanab RAI, Matter IA, Kim S, Oh Y, Choi J, Jeon B (2011) Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy 35(7):3079–3085Google Scholar
  2. Andersen RA (2005) Algae culturing techniques. Elsevier, San DiegoGoogle Scholar
  3. Bell PR, Hemsley AR (2004) Green plants, their origin and diversity. Cambridge University Press, CambridgeGoogle Scholar
  4. Brennan L, Owende P (2010) Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577CrossRefGoogle Scholar
  5. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22(6):1490–1506PubMedGoogle Scholar
  6. Cavalier-Smith T (2004) Only six kingdoms of life. Proceedings of the Royal Society B 271:1251–1262Google Scholar
  7. Cavalier-Smith T, Chao EE-Y (2006) Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromist). Journal of Molecular Evolution 62:388–420Google Scholar
  8. Chena CY, Yeh KL, Aisyaha R, Leec DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81CrossRefGoogle Scholar
  9. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306PubMedCrossRefGoogle Scholar
  10. Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Inten 48(6):1146–1151CrossRefGoogle Scholar
  11. Craggs RJ, Heubeck S, Lundquist TJ, Benemann JR (2011) Algal biofuels from wastewater treatment high rate algal ponds. Water Sci Technol 63(4):660–665PubMedCrossRefGoogle Scholar
  12. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15(5):898–902PubMedCrossRefGoogle Scholar
  13. Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 66(4):497–503CrossRefGoogle Scholar
  14. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energy 88(10):3454–3463CrossRefGoogle Scholar
  15. Gatenby CM, Orcutt DM, Kreeger DA, Parker BC, Jones VA, Neves RJ (2003) Biochemical composition of three algal species proposed as food for captive freshwater mussels. J Appl Phycol 15:1–11CrossRefGoogle Scholar
  16. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131PubMedCrossRefGoogle Scholar
  17. Graham LE, Wilcox LW, Graham J (2009) Algae. Benjamin Cummings, San FranciscoGoogle Scholar
  18. Griffiths MJ, Harisson STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  19. Grima EM, Belarbia EH, Fernández FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology 20(7):491–515Google Scholar
  20. Grima EM, Medina A, Giménez A, Pérez JS, Camacho F, Sánchez JG (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. J Am Oil Chem Soc 71(9):955–959CrossRefGoogle Scholar
  21. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274PubMedCrossRefGoogle Scholar
  22. Hende SVD, Vervaeren H, Desmet S, Boon N (2011) Biofloculation of microalgae and bacteria combined with flue gas to improve sewage treatment. N Biotechnol, doi:10.1016/j.nbt.2011.04.009 (in press)Google Scholar
  23. Ho S, Chen W, Chang J (2010) Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour Technol 101(22):8725–8730PubMedCrossRefGoogle Scholar
  24. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639PubMedCrossRefGoogle Scholar
  25. Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Tech 27:631–635CrossRefGoogle Scholar
  26. Kröger M, Müller-Langer F (2011) Impact of heterotrophic and mixotrophic growth of microalgae on the production of future biofuels. Biofuels 2(2):145–151CrossRefGoogle Scholar
  27. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481PubMedCrossRefGoogle Scholar
  28. Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce a β-carotene rich powder. J Ind Microbiol Biotechnol 20(2):82–85CrossRefGoogle Scholar
  29. Leea JY, Yooa C, Juna SY, Ahna CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101(1):S75–S77CrossRefGoogle Scholar
  30. Lehr F, Posten C (2009) Closed photo-bioreactors as tools for biofuel production. Curr Opin Biotechnol 20(3):280–285PubMedCrossRefGoogle Scholar
  31. Levine RB, Pinnarat T, Savage PE (2010) Biodiesel production from wet algal biomass through in situ lipid hydrolysis and supercritical transesterification. Energy Fuels 24(9):5235–5243CrossRefGoogle Scholar
  32. Lin S (2011) Genomic understanding of dinoflagellates. Res Microbiol 162(6):551–569PubMedCrossRefGoogle Scholar
  33. Liu XY, Sheng J, Curtiss R (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108(17):6899–6904PubMedCrossRefGoogle Scholar
  34. Mascarelli AL (2009) Gold rush for algae. Nature 461:460–461PubMedCrossRefGoogle Scholar
  35. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232CrossRefGoogle Scholar
  36. Piganeau G, Grimsley N, Moreau H (2011) Genome diversity in the smallest marine photosynthetic eukaryotes. Res Microbiol 162(6):570–577PubMedCrossRefGoogle Scholar
  37. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102(1):35–42PubMedCrossRefGoogle Scholar
  38. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88(10):3377–3388CrossRefGoogle Scholar
  39. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Bioref 3(4):431–440CrossRefGoogle Scholar
  40. Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25PubMedCrossRefGoogle Scholar
  41. Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgae drying by a simple solar device. Int J Solar Energy 18(4):303–311CrossRefGoogle Scholar
  42. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(4):486–501PubMedCrossRefGoogle Scholar
  43. Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424CrossRefGoogle Scholar
  44. Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112PubMedCrossRefGoogle Scholar
  45. Sheehan J, Dunahay T, Benemann J, Roessler PA (1998) Lookback at the US department of energy’s aquatic species programs: biodiesel from algae. National Renewable Energy Laboratory, CO, USACrossRefGoogle Scholar
  46. Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light–dark cycles. J Phycol 17:374–384CrossRefGoogle Scholar
  47. Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610CrossRefGoogle Scholar
  48. Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2):111–113Google Scholar
  49. Sukenik A, Shelef G (1984) Algal autoflocculation-verification and proposed mechanism. Biotechnol Bioeng 26(2):142–147PubMedCrossRefGoogle Scholar
  50. Tredici MR (2010) Photobiology of microalgae mass cultures: understanding the tools for the next green revolution. Biofuels 1(1):143–162CrossRefGoogle Scholar
  51. Uduman N, Qi Y, Danquaha MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy 2(1):12701–12715CrossRefGoogle Scholar
  52. Voosen P (2011) As algae bloom fades, photosynthesis hopes still shine. The New York Times, 29 March 2011Google Scholar
  53. Waltz E (2009a) Biotech’s green gold? Nat Biotechnol 27(1):15–18PubMedCrossRefGoogle Scholar
  54. Waltz E (2009b) Algae trailblazer shuts. Nat Biotechnol 27(7):586CrossRefGoogle Scholar
  55. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868PubMedCrossRefGoogle Scholar
  56. Weissman JC, Benemann JR (1978) Biomass recycling and species control in continuous cultures. Bioeng Biotechnol 21:627–648CrossRefGoogle Scholar
  57. Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing, carbon utilization, and oxygen accumulation. Biotechnol Bioeng 31(4):336–344PubMedCrossRefGoogle Scholar
  58. Whittaker RH (1959) On the broad classification of organisms. Q Rev Biol 34:210–226PubMedCrossRefGoogle Scholar
  59. Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20CrossRefGoogle Scholar
  60. Wiley PE, Campbell JE, McKuin B (2011) Production of biodiesel and biogas from algae: a review of process train options. Water Environ Res 83:326–338PubMedCrossRefGoogle Scholar
  61. Woese CR, Gibson J, Fox GE (1980) Do genealogical patterns in purple photosynthetic bacteria reflect interspecific gene transfer? Nature 283(10):212–214PubMedCrossRefGoogle Scholar
  62. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87(12):4576–4579PubMedCrossRefGoogle Scholar
  63. Wu Z, Shi X (2007) Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol 44:13–18PubMedCrossRefGoogle Scholar
  64. Xiong W, Gao C, Yan D, Wu C, Wu Q (2010) Double CO2 fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. Bioresour Technol 101(7):2287–2293PubMedCrossRefGoogle Scholar
  65. Yang J, Li X, Hu H, Zhang X, Yu Y, Chen Y (2011) Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl Energy 88(10):3295–3299CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Département de microbiologie et immunologieUniversité de MontréalMontréalCanada

Personalised recommendations