Advertisement

Towards a Cognitive and Neurobiological Model of Motivated Forgetting

  • Michael C. Anderson
  • Ean Huddleston
Part of the Nebraska Symposium on Motivation book series (NSM, volume 58)

Abstract

Historically, research on forgetting has been dominated by the assumption that forgetting is passive, reflecting decay, interference, and changes in context. This emphasis arises from the pervasive assumption that forgetting is a negative outcome. Here, we present a functional view of forgetting in which the fate of experience in memory is determined as much by motivational forces that dictate the focus of attention as it is by passive factors. A central tool of motivated forgetting is retrieval suppression, a process whereby people shut down episodic retrieval to control awareness. We review behavioral, neurobiological, and clinical research and show that retrieval suppression leads us to forget suppressed experiences. We discuss key questions necessary to address to develop this model, relationships to other forgetting phenomena, and the implications of this research for understanding recovered memories. This work provides a foundation for understanding how motivational forces influence what we remember of life experience.

Keywords

Recovered memories Retrieval-suppression Motivated forgetting Neuroimaging and memory control 

Notes

Acknowledgments

Preparation of this article was supported by National Science Foundation grant 0643321. The authors would like to thank Robert Bjork, Steve Smith, Karl-Heinz Bauml, Lili Sahakyan, Tracy Taylor-Hemick, Paula Hertel, Jutta Joormann, Kepa Paz-Alanso, Roland Benoit, and Zara Bergstrom for useful comments on this manuscript.

References

  1. Adams, Z. W., Derefinko, K. J., Milich, R., & Fillmore, M. T. (2008). Inhibitory functioning across ADHD subtypes: Recent findings, clinical implications, and future directions. Developmental Disabilities Research Reviews, 14(4), 268–275. doi: 10.1002/ddrr.37.PubMedGoogle Scholar
  2. Allen, G. A., Mahler, W. A., & Estes, W. K. (1969). Effects of recall tests on long-term retention of paired associates. Journal of Verbal Learning and Verbal Behavior, 8(4), 463–470.Google Scholar
  3. Anderson, M. C. (2001). Active forgetting: Evidence for functional inhibition as a source of memory failure. Journal of Aggression, Maltreatment, and Trauma, 4(2), 185–210.Google Scholar
  4. Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.Google Scholar
  5. Anderson, M. C. (2005). The role of inhibitory control in forgetting unwanted memories: A consideration of three methods. In C. MacLeod & B. Uttl (Eds.), Dynamic cognitive processes (pp. 159–190). Tokyo: Springer.Google Scholar
  6. Anderson, M. C., Bjork, R., & Bjork, E. (1994). Remembering can cause forgetting: Retrieval dynamics in long-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1063–1087.PubMedGoogle Scholar
  7. Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410, 366–369.PubMedGoogle Scholar
  8. Anderson, M. C., Reinholz, J., Kuhl, B., & Mayr, U. (2011). Intentional suppression of unwanted memories grows more difficult as we age. Psychology and Aging, 26, 397–405.Google Scholar
  9. Anderson, M. C., & Levy, B. J. (2006). Encouraging the nascent cognitive neuroscience of repression. Behavioral and Brain Sciences, 29(5), 511–513.Google Scholar
  10. Anderson, M. C., Ochsner, K. N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S. W., et al. (2004). Neural systems underlying the suppression of unwanted memories. Science, 303(5655), 232–235. doi: 10.1126/science.1089504.PubMedGoogle Scholar
  11. Anderson, M. C., & Spellman, B. A. (1995). On the status of inhibitory mechanisms in cognition: Memory retrieval as a model case. Psychological Review, 102(1), 68–100.PubMedGoogle Scholar
  12. Anderson, M. C., & Weaver, C. (2009). Inhibitory control over action and memory. In L. R. Squire (Ed.), The new encyclopedia of neuroscience (pp. 153–163). Oxford: Elsevier Ltd. doi: 10.1016/B978-008045046- 9.00421-6.Google Scholar
  13. Arnold, M. M., & Lindsay, D. S. (2002). Remembering remembering. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 521–529.PubMedGoogle Scholar
  14. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115–116. doi: 10.1038/nn1003.PubMedGoogle Scholar
  15. Aslan, A., & Bäuml, K. T. (2010). Retrieval-induced forgetting in young children. Psychonomic Bulletin and Review, 17(5), 704–709. doi: 10.3758/PBR.17.5.704.PubMedGoogle Scholar
  16. Baddeley, A. D., Eysenck, M., & Anderson, M. C. (2009). Memory. Hove: Psychology Press.Google Scholar
  17. Band, G. P., & van Boxtel, G. J. (1999). Inhibitory motor control in stop paradigms: Review and reinterpretation of neural mechanisms. Acta Psychologica, 101(2–3), 179–211.PubMedGoogle Scholar
  18. Barkley, R. (1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 65–94.PubMedGoogle Scholar
  19. Basden, B. H., Basden, D. R., & Gargano, G. J. (1993). Directed forgetting in implicit and explicit memory tests: A comparison of methods. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(3), 603–616.Google Scholar
  20. Baumeister, R. (2003). Ego depletion and self-regulation failure: A resource model of self-control. Alcoholism, Clinical and Experimental Research, 27(2), 281–284. doi: 10.1097/01.ALC.0000060879.61384.A4.PubMedGoogle Scholar
  21. Baumeister, R., Bratslavsky, E., Muraven, M., & Tice, D. M. (1998). Ego depletion: Is the active self a limited resource. Journal of Personality and Social Psychology, 74(5), 1252–1265.PubMedGoogle Scholar
  22. Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2005). Source analysis of the N2 in a cued Go/NoGo task. Cognitive Brain Research, 22(2), 221–231. doi: 10.1016/j.cogbrainres.2004.08.011.PubMedGoogle Scholar
  23. Benjamin, A. (2010). In Benjamin Aaron (Ed.), Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork. New York: Psychology Press.Google Scholar
  24. Bergstrom, Z. M., Anderson, M. C., Buda, M., Simons, J., & Richardson-Klavehn, A. (submitted). Intentional retrieval suppression can conceal guilty knowledge in ERP memory detection tests.Google Scholar
  25. Bergström, Z. M., de Fockert, J. W., & Richardson-Klavehn, A. (2009). ERP and behavioural evidence for direct suppression of unwanted memories. NeuroImage, 48(4), 726–737. doi: 10.1016/j.neuroimage.2009.06.051.PubMedGoogle Scholar
  26. Bergström, Z. M., Velmans, M., de Fockert, J., & Richardson-Klavehn, A. (2007). ERP evidence for successful voluntary avoidance of conscious recollection. Brain Research, 1151, 119–133. doi: 10.1016/j.brainres.2007.03.014.PubMedGoogle Scholar
  27. Bjork, R. A. (1972). Theoretical implications of directed forgetting. In A. W. Melton & E. Martin (Eds.), Coding processes in human memory (pp. 217–235). Washington, DC: Winston.Google Scholar
  28. Bjork, R. A. (1975). Retrieval as a memory modifier. In R. Solso (Ed.), Information processing and cognition: The Loyola Symposium (pp. 123–144). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  29. Bjork, R. A. (1989). Retrieval inhibition as an adaptive mechanism in human memory. In H. L. Roediger & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 309–330). Hillsdale, NJ: Erlbaum.Google Scholar
  30. Bjork, E. L., & Bjork, R. A. (2003). Intentional forgetting can increase, not decrease, the residual influences of to-be-forgotten information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 524–531.PubMedGoogle Scholar
  31. Bjork, E. L., Bjork, R. A., & Anderson, M. C. (1998). Varieties of goal-directed forgetting. In J. M. Golding & C. M. MacLeod (Eds.), Intentional forgetting: Interdisciplinary approaches (pp. 103–137). Hillsdale, NJ: Erlbaum.Google Scholar
  32. Bokura, H., Yamaguchi, S., & Kobayashi, S. (2001). Electrophysiological correlates for response inhibition in a Go/NoGo task. Clinical Neurophysiology, 112(12), 2224–2232.PubMedGoogle Scholar
  33. Booth, J. R., Burman, D. D., Meyer, J. R., Lei, Z., Trommer, B. L., Davenport, N. D., et al. (2005). Larger deficits in brain networks for response inhibition than for visual selective attention in attention deficit hyperactivity disorder (ADHD). The Journal of Child Psychology and Psychiatry, 46(1), 94–111. doi: 10.1111/j.1469-7610.2004.00337.x.Google Scholar
  34. Brewin, C. R. (2012, this volume). A theoretical framework for understanding recovered memory experiences. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 149–173). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  35. Brown, A. S. (1976). Spontaneous recovery and human learning. Psychological Bulletin, 83, 321–338.PubMedGoogle Scholar
  36. Bulevich, J. B., Roediger, H. L., Balota, D. A., & Butler, A. C. (2006). Failures to find suppression of episodic memories in the think/no-think paradigm. Memory & Cognition, 34(8), 1569–1577.Google Scholar
  37. Butler, A. J., & James, K. H. (2010). The neural correlates of attempting to suppress negative versus neutral memories. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 182–194. doi: 10.3758/CABN.10.2.182.Google Scholar
  38. Cameron, C. (1993, April). Recovering memories of childhood sexual abuse: A longitudinal report. Paper presented at the Western Psychological Association convention, Phoenix, AZ, USA.Google Scholar
  39. Carrier, M., & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20(6), 633–642.Google Scholar
  40. Casey, B. J., Castellanos, F. X., Giedd, J. N., Marsh, W. L., Hamburger, S. D., Schubert, A. B., et al. (1997). Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 36(3), 374–383. doi: 10.1097/00004583-199703000-00016.PubMedGoogle Scholar
  41. Chan, J. C. K. (2009). Long-term effects of testing on the recall of nontested materials. Memory, 18(1), 49–57. doi: 10.1080/09658210903405737.PubMedGoogle Scholar
  42. Conroy, R., & Salmon, K. (2005). Selective postevent review and childrens’ memory for nonreviewed materials. Journal of Experimental Child Psychology, 90(4), 185–207. doi: 10.1016/j.jecp. 2004.11.004.PubMedGoogle Scholar
  43. Conroy, R., & Salmon, K. (2006). Talking about parts of a past experience: The impact of discussion style and event structure on memory for discussed and nondiscussed information. Journal of Experimental Child Psychology, 95(4), 278–297. doi: 10.1016/j.jecp. 2006.06.001.PubMedGoogle Scholar
  44. DePrince, A., Brown, L., Cheit, R., Freyd, J., Gold, S. N., Pezdek, K., & Quina, K. (2012, this volume). Motivated forgetting and misremembering: Perspectives from betrayal trauma theory. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 193–242). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  45. Depue, B. E., Banich, M. T., & Curran, T. (2006). Suppression of emotional and nonemotional content in memory: Effects of repetition on cognitive control. Psychological Science, 17(5), 441–447. doi: 10.1111/j.1467-9280.2006.01725.x.PubMedGoogle Scholar
  46. Depue, B. E., Burgess, G. C., Willcutt, E. G., Bidwell, L. C., Ruzic, L., & Banich, M. T. (2010). Symptom-correlated brain regions in young adults with combined-type ADHD: Their organization, variability, and relation to behavioral performance. Psychiatry Research: Neuroimaging, 182(2), 96–102. doi: 10.1016/j.pscychresns.2009.11.011.PubMedGoogle Scholar
  47. Depue, B. E., Burgess, G. C., Willcutt, E. G., Ruzic, L., & Banich, M. T. (2010). Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: Evidence from deficits in individuals with ADHD. Neuropsychologia, 48(13), 3909–3917. doi: 10.1016/j.neuropsychologia.2010.09.013.PubMedGoogle Scholar
  48. Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317(5835), 215–219. doi: 10.1126/science.1139560.PubMedGoogle Scholar
  49. Detre, G. J., Natarajan, A., & Norman, K. A. (2010, November). Moderate memory activation leads to forgetting in the Think-No Think paradigm. Poster presented at the Annual Meeting of the Society for Neuroscience, San Diego, CA, USA.Google Scholar
  50. Dieler, A. C., Plichta, M. M., Dresler, T., & Fallgatter, A. J. (2010). Suppression of emotional words in the Think/No-Think paradigm investigated with functional near-infrared spectroscopy. International Journal of Psychophysiology, 78(2), 129–135. doi: 10.1016/j.ijpsycho.2010.06.358.PubMedGoogle Scholar
  51. Donkers, F., & van Boxtel, G. J. M. (2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56, 165–176.PubMedGoogle Scholar
  52. Duzel, E., Cabeza, R., Picton, T. W., Yonelinas, A. P., Scheich, H., Heinze, H. J., et al. (1999). Task-related and item-related brain processes of memory retrieval. Proceedings of the National Academy of Sciences, 96, 1794–1799.Google Scholar
  53. Eimer, M. (1993). Effects of attention and stimulus probability on ERPs in a Go/Nogo task. Biological Psychology, 35(2), 123–138.PubMedGoogle Scholar
  54. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149.PubMedGoogle Scholar
  55. Erdelyi, M. H. (1996). The recovery of unconscious memories: Hypermnesia and reminiscence. Chicago: The University of Chicago Press.Google Scholar
  56. Erdelyi, M. H. (2006). The unified theory of repression. Behavioral and Brain Sciences, 29(5), 499–551. doi: 10.1017/S0140525X06009113.PubMedGoogle Scholar
  57. Erdelyi, M., & Kleinbard, J. (1978). Has Ebbinghaus decayed with time? The growth of recall (hypermnesia) over days. Journal of Experimental Psychology: Human Learning and Memory, 4(4), 275–289.Google Scholar
  58. Falkenstein, M. (2006). Inhibition, conflict and the Nogo-N2. Clinical Neurophysiology, 117(8), 1638–1640. doi: 10.1016/j.clinph.2006.05.002.PubMedGoogle Scholar
  59. Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101(2–3), 267–291.PubMedGoogle Scholar
  60. Fawcett, J. M., & Taylor, T. L. (2008). Forgetting is effortful: Evidence from reaction time probes in an item-method directed forgetting task. Memory & Cognition, 36(6), 1168–1181.Google Scholar
  61. Feldman-Summers, S., & Pope, K. S. (1994). The experience of ‘forgetting’ child abuse: A national survey of psychologists. Journal of Consulting and Clinical Psychology, 3, 626–639.Google Scholar
  62. Ford, R. M., Keating, S., & Patel, R. (2004). Retrieval-induced foregetting: A developmental study. Developmental Psychology, 22(4), 5850–603.Google Scholar
  63. Freyd, J. J. (1996). Betrayal trauma: The logic of forgetting childhood abuse. Cambridge, MA: Harvard University Press.Google Scholar
  64. Freyd, J. J., DePrince, A. P., & Gleaves, D. (2007). The state of betrayal trauma theory: Reply to McNally – conceptual issues and future directions. Memory, 15, 295–311.Google Scholar
  65. Freyd, J. J., Deprince, A. P., & Zurbriggen, E. L. (2006). Self-reported memory for abuse depends upon victim-perpetrator relationship. Journal of Trauma & Dissociation, 2(3), 5–15.Google Scholar
  66. Friedman, D., & Johnson, R. (2000). Event-related potential (ERP) studies of memory encoding and retrieval: A selective review. Microscopy Research and Technique, 51(1), 6–28. doi:10.1002/1097-0029(20001001)51:1<6::AID-JEMT2>3.0.CO;2-R.PubMedGoogle Scholar
  67. Garavan, H., Ross, T. J., Murphy, K., Roche, R. A. P., & Stein, E. A. (2002). Dissociable executive functions in the dynamic control of behavior: Inhibition, error detection, and correction. NeuroImage, 17(4), 1820–1829.PubMedGoogle Scholar
  68. Garcia-Bajos, E., Migueles, M., & Anderson, M. C. (2009). Script knowledge modulates retrieval-induced forgetting for eyewitness events. Memory, 17(1), 92–103. doi: 10.1080/09658210802572454.PubMedGoogle Scholar
  69. Geiselman, R. E., Bjork, R. A., & Fishman, D. L. (1983). Disrupted retrieval in directed forgetting: A link with posthypnotic amnesia. Journal of Experimental Psychology: General, 112(1), 58–72.Google Scholar
  70. Geraerts, E., Arnold, M. M., Lindsay, D. S., Merckelbach, H., Jelicic, M., & Hauer, B. (2006). Forgetting of prior remembering in people reporting recovered memories of childhood sexual abuse. Psychological Science, 17, 1002–1008.PubMedGoogle Scholar
  71. Geraerts, E. (2012, this volume). Cognitive underpinnings of recovered memories of childhood abuse. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 175–191). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  72. Geraerts, E., McNally, R. J., Jelicic, M., Merckelbach, H., & Raymaekers, L. (2008). Linking thought suppression and recovered memories of childhood sexual abuse. Memory, 16(1), 22–28. doi: 10.1080/09658210701390628.PubMedGoogle Scholar
  73. Goernert, P. (2005). Source-monitoring accuracy across repeated tests following directed forgetting. British Journal of Psychology, 96(2), 231–247.PubMedGoogle Scholar
  74. Goernert, P. N., & Wolfe, T. (1997). Is there hypermnesia and reminiscence for information intentionally forgotten? Canadian Journal of Experimental Psychology, 51(3), 231–240.PubMedGoogle Scholar
  75. Goldberg, L. R., & Freyd, J. J. (2006). Self-reports of potentially traumatic experiences in an adult community sample: Gender differences and test-retest stabilities of the items in a brief betrayal-trauma survey. Journal of Trauma & Dissociation, 7(3), 39–63.Google Scholar
  76. Golding, J. M., & MacLeod, C. M. (1998). Intentional forgetting: Interdisciplinary approaches. Mahwah, NJ: Erlbaum.Google Scholar
  77. Goodman, G. S., Ghetti, S., Quas, J. A., Edelstein, R. S., Alexander, K. W., Redlich, A. D., et al. (2003). A prospective study of memory for child sexual abuse: New findings relevant to the repressed-memory controversy. Psychological Science, 14, 113–118.PubMedGoogle Scholar
  78. Goodmon, L. B., & Anderson, M. C. (2011). Semantic integration as a boundary condition on inhibitory processes in episodic retrieval. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(2), 416–436. doi: 10.1037/a0021963.PubMedGoogle Scholar
  79. Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136(4), 495–525. doi: 10.1037/a0019486.PubMedGoogle Scholar
  80. Hanslmayr, S., Leipold, P., & Bauml, K. (2010). Anticipation boosts forgetting of voluntarily suppressed memories. Memory, 18, 252–257. doi: 10.1080/09658210903476548.PubMedGoogle Scholar
  81. Hanslmayr, S., Leipold, P., Pastötter, B., & Bäuml, K. (2009). Anticipatory signatures of voluntary memory suppression. The Journal of Neuroscience, 29(9), 2742–2747. doi: 10.1523/JNEUROSCI.4703-08.2009.PubMedGoogle Scholar
  82. Harnishfeger, K. K., & Pope, R. S. (1996). Intending to forget: The development of cognitive inhibition in directed forgetting. Journal of Experimental Child Psychology, 62(2), 292–315. doi: 10.1006/jecp. 1996.0032.PubMedGoogle Scholar
  83. Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. In H. Bower (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193–225). San Diego, CA: Academic.Google Scholar
  84. Henkel, L. A. (2004). Erroneous memories arising from repeated attempts to remember. Journal of Memory and Language, 50, 26–46.PubMedGoogle Scholar
  85. Henkel, L., & Koffman, K. J. (2004). Memory distortions in coerced false confessions: A source monitoring framework analysis. Applied Cognitive Psychology, 18(5), 567–588.Google Scholar
  86. Hertel, P. T. (1994). Depressive deficits in memory: Implications of research and theory for memory improvement following traumatic brain injury. NeuroRehabilitation, 4, 143–150.Google Scholar
  87. Hertel, P. T. (1998). Relation between rumination and impaired memory in dysphoric moods. Journal of Abnormal Psychology, 107(1), 166–172.PubMedGoogle Scholar
  88. Hertel, P. T., Large, D., Dahl, E., & Levy, A. (2011). Suppression-induced forgetting on a free-association test.Google Scholar
  89. Hertel, P. T., & Calcaterra, G. (2005). Intentional forgetting benefits from thought substitution. Psychonomic Bulletin and Review, 12(3), 484–489.PubMedGoogle Scholar
  90. Hertel, P. T., & Gerstle, M. (2003). Depressive deficits in forgetting. Psychological Science, 14(6), 573–578.PubMedGoogle Scholar
  91. Hertel, P., & Mahan, A. (2008). Depression-related differences in learning and forgetting responses to unrelated cues. Acta Psychologica, 127(3), 636–644. doi: 10.1016/j.actpsy.2007.11.004.PubMedGoogle Scholar
  92. Hertel, P., & McDaniel, L. (2010). The suppressive power of positive thinking: Aiding suppression-induced forgetting in repressive coping. Cognition and Emotion, 24(7), 1239–1249.Google Scholar
  93. Hotta, C., & Kawaguchi, J. (2009). Self-initiated use of thought substitution can lead to long term forgetting. Psychologia, 52(1), 41–49.Google Scholar
  94. Hourihan, K. L., & Taylor, T. L. (2006). Cease remembering: Control processes in directed forgetting. Journal Of Experimental Psychology: Human Perception and Performance, 32(6), 1354–1365. doi: 10.1037/0096-1523.32.6.1354.PubMedGoogle Scholar
  95. Huddleston, E., & Anderson, M.C. (in preparation). Retrieval suppression modulates activation in content-specific neocortical areas.Google Scholar
  96. Hulbert, J. C., Anderson, M. C., & Kuhl, B. (in preparation). Enhanced inhibitory control over memory in people with extensive traumatic experience.Google Scholar
  97. Hulbert, M. C., Shivde, G. S., & Anderson, M. C. (2011). Evidence against associative blocking as a cause of cue-independent retrieval-induced forgetting. Experimental Psychology.PubMedGoogle Scholar
  98. Iversen, S., & Mishkin, M. (1970). Perseverative interference in monkeys following selective lesions of inferior prefrontal convexity. Experimental Brain Research, 11(4), 376–386.Google Scholar
  99. Johnson, M. K. (1994). Binding complex memories: The role of reactivation and the hippocampus. In D. L. Schacter & E. Tulving (Eds.), Memory systems (pp. 311–350). Cambridge, MA: The MIT Press.Google Scholar
  100. Johnson, R., Kreiter, K., Russo, B., & Zhu, J. (1998). A spatio-temporal analysis of recognition-related event-related brain potentials. International Journal of Psychophysiology, 29(1), 83–104.PubMedGoogle Scholar
  101. Joormann, J., Hertel, P. T., Brozovich, F., & Gotlib, I. H. (2005). Remembering the good, forgetting the bad: Intentional forgetting of emotional material in depression. Journal of Abnormal Psychology, 114(4), 640–648. doi: 10.1037/0021-843X.114.4.640.PubMedGoogle Scholar
  102. Joormann, J., Hertel, P. T., Lemoult, J., & Gotlib, I. H. (2009). Training forgetting of negative material in depression. Journal of Abnormal Psychology, 118(1), 34–43. doi: 10.1037/a0013794.PubMedGoogle Scholar
  103. Joormann, J., Yoon, K. L., & Zetsche, U. (2007). Cognitive inhibition in depression. Applied and Preventive Psychology, 12, 128–139.Google Scholar
  104. Karpicke, J. D., & Roediger, H. L. (2008). The critical importance of retrieval for learning. Science, 319(5865), 966–968. doi: 10.1126/science.1152408.PubMedGoogle Scholar
  105. Kikuchi, H., Fujii, T., Abe, N., Suzuki, M., Takagi, M., Mugikura, S., et al. (2010). Memory repression: Brain mechanisms underlying dissociative amnesia. Journal of Cognitive Neuroscience, 22(3), 602–613. doi: 10.1162/jocn.2009.21212.PubMedGoogle Scholar
  106. Kim, K., & Yi, D. (2008, November). Perceptual consequences of memory suppression. Poster presented at the Annual Meeting of the Society for Neuroscience, Washington, DC, USA.Google Scholar
  107. Kim, K., Yi, D., Yang, E., & Lee, K. (2007). What makes repressors good suppressors? The effect of trait anxiety. Korean Journal of Psychology, 26, 261–277.Google Scholar
  108. Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and Clinical Neurophysiology, 99(1), 19–27.PubMedGoogle Scholar
  109. Lambert, A. J., Good, K. S., & Kirk, I. J. (2010). Testing the repression hypothesis: Effects of emotional valence on memory suppression in the think – no think task. Consciousness and Cognition, 19(1), 281–293. doi: 10.1016/j.concog.2009.09.004.PubMedGoogle Scholar
  110. Landauer, T. K., & Bjork, R. A. (1978). Optimum rehearsal patterns and name learning. In M. M. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.), Practical aspects of memory (pp. 625–632). New York: Academic.Google Scholar
  111. Lavric, A., Pizzagalli, D. A., & Forstmeier, S. (2004). When ‘go’ and ‘nogo’ are equally frequent: ERP components and cortical tomography. The European Journal of Neuroscience, 20(9), 2483–2488. doi: 10.1111/j.1460-9568.2004.03683.x.PubMedGoogle Scholar
  112. Lee, Y., Lee, H., & Tsai, S. (2007). Effects of post-cue interval on intentional forgetting. British Journal of Psychology, 98(2), 257–272. doi: 10.1348/000712606X120410.PubMedGoogle Scholar
  113. LeMoult, J., Hertel, P. T., & Joorman, J. (2010). Training the forgetting of negative words: The role of direct suppression and the relation to stress reactivity. Applied Cognitive Psychology, 24, 365–375.Google Scholar
  114. Levy, B. J., & Anderson, M. C. (2002). Inhibitory processes and the control of memory retrieval. Trends in Cognitive Sciences, 6(7), 299–305.PubMedGoogle Scholar
  115. Levy, B. J., & Anderson, M. C. (2008). Individual differences in the suppression of unwanted memories: The executive deficit hypothesis. Acta Psychologica, 127(3), 623–635. doi: 10.1016/j.actpsy.2007.12.004.PubMedGoogle Scholar
  116. Levy, B. J., & Wagner, A. D. (2011). Cognitive control and right ventrolateral prefrontal cortex: reflexive reorienting, motor inhibition, and action updating. Annals of the New York Academy of Sciences, 1224, 40–62.PubMedGoogle Scholar
  117. Logan, G. D., Cowan, W., & Davis, K. (1994). On the ability to inhibit thought and action: A users’ guide to the stop-signal paradigm. In D. D. Carr & T. H. Carr (Eds.), Inhibitory processes in attention, memory, and language (pp. 189–239). San Diego, CA: Academic.Google Scholar
  118. Luria, A. R. (1966). Higher cortical functions in man. New York: Basic Books.Google Scholar
  119. Lustig, C., Hasher, L., & Tonev, S. T. (2001a). Inhibitory control over the present and the past. European Journal of Cognitive Psychology, 13, 107–122.Google Scholar
  120. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.PubMedGoogle Scholar
  121. MacLeod, M., & Macrae, C. (2001). Gone but not forgotten: The transient nature of retrieval-induced forgetting. Psychological Science, 12(2), 148–152.PubMedGoogle Scholar
  122. MacLeod, M. D., & Saunders, J. (2008). Retrieval inhibition and memory distortion: Negative consequences of an adaptive process. Current Directions in Psychological Science, 17(1), 26–30.Google Scholar
  123. Marx, B. P., Marshall, P. J., & Castro, F. (2008). The moderating effects of stimulus valence and arousal on memory suppression. Emotion, 8(2), 199–207. doi: 10.1037/1528-3542.8.2.199.PubMedGoogle Scholar
  124. McNally, R. J. (2007). Betrayal trauma theory: A critical appraisal. Memory, 15, 280–294.PubMedGoogle Scholar
  125. Mecklinger, A., Parra, M., & Waldhauser, G. T. (2009). ERP correlates of intentional forgetting. Brain Research, 1255(C), 132–147. doi: doi:10.1016/j.brainres.2008.11.073.PubMedGoogle Scholar
  126. Meier, B., König, A., Parak, S., & Henke, K. (2011). Suppressed, but not forgotten. Swiss Journal of Psychology, 70(1), 5–11. doi: 10.1024/1421-0185/a000033.Google Scholar
  127. Menon, V., Adleman, N. E., White, C. D., Glover, G. H., & Reiss, A. L. (2001). Error-related brain activation during a Go/NoGo response inhibition task. Human Brain Mapping, 12(3), 131–143.PubMedGoogle Scholar
  128. Murray, B. D., Muscatell, K. A., & Kensinger, E. A. (2011). Effects of Emotion and Age on Performance During a Think/No-Think Memory Task Psychology and Aging in press.Google Scholar
  129. Nigg, J. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220–246.PubMedGoogle Scholar
  130. Nigg, J. (2001). Is ADHD a disinhibitory disorder? Psychological Bulletin, 127(5), 571–598. doi: 10.1037//0033-2909.127.5.571.PubMedGoogle Scholar
  131. Nørby, S., Lange, M., & Larsen, A. (2010). Forgetting to forget: On the duration of voluntary suppression of neutral and emotional memories. Acta Psychologica, 133(1), 73–80. doi: 10.1016/j.actpsy.2009.10.002.PubMedGoogle Scholar
  132. Norman, W., & Shallice, T. (1986). Attention to action. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and self regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.Google Scholar
  133. Ogle, C. M., & Paz-Alonso, P. M. (in preparation). Developmental changes in the suppression of emotional memories.Google Scholar
  134. Oosterlaan, J., Logan, G. D., & Sergeant, J. A. (1998). Response inhibition in AD/HD, CD, comorbid AD/HD  +  CD, anxious, and control children: A meta-analysis of studies with the stop task. Journal of Child Psychology and Psychiatry, 39(3), 411–425.PubMedGoogle Scholar
  135. Pavlov, I. P. (1927) Conditioned reflexes (G. V. Anrep, Trans.). London: Oxford University Press.Google Scholar
  136. Payne, D. G. (1987). Hypermnesia and reminiscence in recall: A historical and empirical review. Psychological Bulletin, 101(1), 5–27. doi: 10.1037/0033-2909.101.1.5.Google Scholar
  137. Paz-Alonso, P. M., Ghetti, S., Wendelken, C., Anderson, M. C., & Bunge, S. (2011). Mnemonic control relies on a frontal-parietal-hippocampal network that is strengthened over childhood.Google Scholar
  138. Paz-Alonso, P. M., Ghetti, S., Matlen, B. J., Anderson, M. C., & Bunge, S. A. (2009). Memory suppression is an active process that improves over childhood. Frontiers in Human Neuroscience, 3, 24. doi: 10.3389/neuro.09.024.2009.PubMedGoogle Scholar
  139. Quay, H. C. (1997). Inhibition and attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 25(1), 7–13.PubMedGoogle Scholar
  140. Racsmány, M., Conway, M. A., & Demeter, G. (2010). Consolidation of episodic memories during sleep: Long-term effects of retrieval practice. Psychological Science, 21(1), 80–85. doi: 10.1177/0956797609354074.PubMedGoogle Scholar
  141. Ramautar, J., Kok, A., & Ridderinkhof, K. (2004). Effects of stop-signal probability in the stop-signal paradigm: The N2/P3 complex further validated. Brain and Cognition, 56(2), 234–252. doi: 10.1016/j.bandc.2004.07.002.PubMedGoogle Scholar
  142. Rescorla, R. A. (2004). Spontaneous recovery. Learning & Memory, 11(5), 501–509. doi: 10.1101/lm.77504.Google Scholar
  143. Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S., Simmons, A., et al. (1999). Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: A study with functional MRI. American Journal of Psychiatry, 156, 891–896.PubMedGoogle Scholar
  144. Rubia, K., Smith, A. B., Brammer, M. J., Tonne, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. American Journal of Psychiatry, 162, 1067–1075.PubMedGoogle Scholar
  145. Sahakyan, L., & Kelley, C. (2002). A contextual change account of the directed forgetting effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(6), 1064–1072. doi: 10.1037//0278-7393.28.6.1064.PubMedGoogle Scholar
  146. Sahakyan, L., Waldum, E. R., Benjamin, A. S., & Bickett, S. P. (2009). Where is the forgetting with list-method directed forgetting in recognition? Memory & Cognition, 37(4), 464–476. doi: 10.3758/MC.37.4.464.Google Scholar
  147. Salamé, P., & Danion, J. (2007). Inhibition of inappropriate responses is preserved in the Think-No-Think and impaired in the random number generation tasks in schizophrenia. Journal of the International Neuropsychological Society, 13(2), 277–287. doi: 10.1017/S1355617707070300.PubMedGoogle Scholar
  148. Sasaki, K., Gemba, H., & Tsujimoto, T. (1989). Suppression of visually initiated hand movement by stimulation of the prefrontal cortex in the monkey. Brain Research, 495(1), 100–107.PubMedGoogle Scholar
  149. Saunders, J., & MacLeod, M. D. (2002). New evidence on the suggestibility of memory: The role of retrieval-induced forgetting in misinformation effects. Journal of Experimental Psychology: Applied, 8(2), 127–142.PubMedGoogle Scholar
  150. Schmajuk, M., Liotti, M., Busse, L., & Woldorff, M. G. (2006). Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia, 44(3), 384–395. doi: 10.1016/j.neuropsychologia.2005.06.005.PubMedGoogle Scholar
  151. Schooler, J. W., Bendiksen, M., & Ambadar, Z. (1997). Taking the middle line: Can we accommodate both fabricated and recovered memories of sexual abuse? In M. Conway (Ed.), Recovered Memories and False Memories. Oxford: Oxford University Press.Google Scholar
  152. Schultz, T. M., Passmore, J., & Yodor, C. Y. (2003). Emotional closeness with perpetrators and amnesia for child sexual abuse. Journal of Child Sexual Abuse, 12, 67–88.PubMedGoogle Scholar
  153. Shobe, K. K., & Schooler, J. W. (2001). Discovering fact and fiction: Case-based analyses of authentic and fabricated memories of abuse. In G. M. Davies & T. Dalgleish (Eds.), Recovered memories: Seeking the middle ground (pp. 95–151). Chichester: Wiley.Google Scholar
  154. Smith, M. (1993). Neurophysiological manifestations of recollective experience during recognition memory judgments. Journal of Cognitive Neuroscience, 5(1), 1–13.Google Scholar
  155. Smith, M., & Guster, K. (1993). Decomposition of recognition memory event-related potentials yields target, repetition, and retrieval effects. Electroencephalography and Clinical Neurophysiology, 86(5), 335–343.PubMedGoogle Scholar
  156. Smith, S. M., & Moynan, S. C. (2008). Forgetting and recovering the unforgettable. Psychological Science, 19(5), 462–468. doi: 10.1111/j.1467-9280.2008.02110.x.PubMedGoogle Scholar
  157. Smith, S. M., & Vela, E. (1991). Incubated reminiscence effects. Memory & Cognition, 19(2), 168–176.Google Scholar
  158. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.PubMedGoogle Scholar
  159. Storm, B. C. (2010). Retrieval-induced forgetting and the resolution of competition. In A. Benjamin (Ed.), Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork (pp. 89–105). New York: Psychology Press.Google Scholar
  160. Storm, B. C., Bjork, E. L., Bjork, R. A., & Nestojko, J. F. (2006). Is retrieval success a necessary condition for retrieval-induced forgetting? Psychonomic Bulletin and Review, 13(6), 1023–1027.PubMedGoogle Scholar
  161. Storm, B. C., & White, H. A. (2010). ADHD and retrieval-induced forgetting: Evidence for a deficit in the inhibitory control of memory. Memory, 18(3), 265–271. doi: 10.1080/09658210903547884.PubMedGoogle Scholar
  162. Tamm, L., Menon, V., Ringel, J., & Reiss, A. (2004). Event-related fMRI evidence of frontotemporal involvement in aberrant response inhibition and task switching in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 43(11), 1430–1440. doi: 10.1097/01.chi.0000140452.51205.8d.PubMedGoogle Scholar
  163. Tandoh, K., & Naka, M. (2007). Durability of retrieval-induced forgetting. Shinrigaku Kenkyu: The Japanese Journal of Psychology, 78(3), 310–315.Google Scholar
  164. Tomlinson, T. D., Huber, D. E., Rieth, C. A., & Davelaar, E. J. (2009). An interference account of cue-independent forgetting in the no-think paradigm. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15588–15593. doi: 10.1073/pnas.0813370106.PubMedGoogle Scholar
  165. Tramoni, E., Aubert-Khalfa, S., Guye, M., Ranjeva, J. P., Felician, O., & Ceccaldi, M. (2009). Hypo-retrieval and hyper-suppression mechanisms in functional amnesia. Neuropsychologia, 47(3), 611–624.PubMedGoogle Scholar
  166. Trott, C. T., Friedman, D., Ritter, W., Fabiani, M., & Snodgrass, J. G. (1999). Episodic priming and memory for temporal source: event-related potentials reveal age-related differences in prefrontal functioning. Psychology and Aging, 14, 390–413.PubMedGoogle Scholar
  167. Underwood, B. J. (1949). Proactive inhibition as a function of time and degree of prior learning. Journal Of Experimental Psychology, 39(1), 24–34.PubMedGoogle Scholar
  168. van Boxtel, G. J., van der Molen, M. W., Jennings, J. R., & Brunia, C. H. (2001). A psychophysiological analysis of inhibitory motor control in the stop-signal paradigm. Biological Psychology, 58(3), 229–262.PubMedGoogle Scholar
  169. Waldhauser, G.T., Johansson, M., & Lindgren, M. (submitted). The effects of intentional suppression on recognition memory.Google Scholar
  170. Waldhauser, G. T., Johansson, M., Backstrom, M., & Mecklinger, A. (2011). Trait anxiety, working memory capacity, and the effectiveness of memory suppression. Scandinavian Journal of Psychology, 52(1), 21–27. doi: 10.1111/j.1467-9450.2010.00845.x.PubMedGoogle Scholar
  171. Wegner, D. M. (1994). Ironic processes of mental control. Psychological Review, 101, 34–52.PubMedGoogle Scholar
  172. Wegner, D. M., Schneider, D. J., Carter, S., & White, T. (1987). Paradoxical effects of thought suppression. Journal of Personality and Social Psychology, 53, 5–13.PubMedGoogle Scholar
  173. Wenzlaff, R. M., & Wegner, D. M. (2000). Thought suppression. In S. T. Fiske (Ed.), Annual review of psychology (Vol. 51, pp. 51–91). Palo Alto, CA: Annual Reviews.Google Scholar
  174. Wessel, I., Huntjens, R. J. C., & Verwoerd, J. R. L. (2010). Cognitive control and suppression of memories of an emotional film. Journal of Behavior Therapy and Experimental Psychiatry, 41(2), 83–89. doi: 10.1016/j.jbtep. 2009.10.005.PubMedGoogle Scholar
  175. Wessel, I., Wetzels, S., Jelicic, M., & Merckelbach, H. (2005). Dissociation and memory suppression: A comparison of high and low dissociative individuals’ performance on the Think-No Think task. Personality and Individual Differences, 39(8), 1461–1470.Google Scholar
  176. Wheeler, M. A. (1995). Improvement in recall over time without repeated testing: Spontaneous recovery revisited. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(1), 173–184.Google Scholar
  177. Wilding, E. L., Doyle, M. C., & Rugg, M. D. (1995). Recognition memory with and without retrieval of context: An event-related potential study. Neuropsychologia, 33(6), 743–767.PubMedGoogle Scholar
  178. Wilding, E., & Rugg, M. (1996). An event-related potential study of recognition memory with and without retrieval of source. Brain, 119, 889–905.PubMedGoogle Scholar
  179. Williams, L. M. (1994). Recall of childhood trauma: A propective study of women’s memories of child sexual abuse. Journal of Consulting and Clinical Psychology, 62(6), 1177–81.Google Scholar
  180. Wilson, S. P., & Kipp, K. (1998). The development of efficient inhibition: Evidence from directed-forgetting tasks. Developmental Review, 18(1), 86–123.Google Scholar
  181. Wylie, G. R., Fox, J. J., & Taylor, T. L. (2008). Forgetting as an active process: An fMRI investigation of item-method directed forgetting. Cerebral Cortex, 18, 670–682.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.MRC Cognition and Brain Sciences UnitUniversity of CambridgeEnglandUK

Personalised recommendations