The Cognitive Neuroscience of True and False Memories

  • Marcia K. Johnson
  • Carol L. Raye
  • Karen J. Mitchell
  • Elizabeth Ankudowich
Part of the Nebraska Symposium on Motivation book series (NSM, volume 58)


Of central relevance to the recovered/false memory debate is understanding the factors that cause us to believe that a mental experience is a memory of an actual past experience. According to the source monitoring framework (SMF), memories are attributions that we make about our mental experiences based on their subjective qualities, our prior knowledge and beliefs, our motives and goals, and the social context. From this perspective, we discuss cognitive behavioral studies using both objective (e.g., recognition, source memory) and subjective (e.g., ratings of memory characteristics) measures that provide much information about the encoding, revival and monitoring processes that yield both true and false memories. The chapter also considers how neuroimaging findings, especially from functional magnetic resonance imaging studies, are contributing to our understanding of the relation between memory and reality.


False memories Functional magnetic resonance imaging (fMRI) Neuroimaging and memory Source monitoring framework (SMF) 


  1. Ackil, J. K., & Zaragoza, M. S. (1998). Memorial consequences of forced confabulation: Age differences in susceptibility to false memories. Developmental Psychology, 34, 1358–1372.PubMedGoogle Scholar
  2. Addis, D. R., Moscovitch, M., Crawley, A. P., & McAndrews, M. P. (2004). Recollective qualities modulate hippocampal activation during autobiographical memory retrieval. Hippocampus, 14, 752–762.PubMedGoogle Scholar
  3. Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The parahippocampus subserves topographical learning in man. Cerebral Cortex, 6, 823–829.PubMedGoogle Scholar
  4. Aminoff, E., Schacter, D. L., & Bar, M. (2008). The cortical underpinnings of context-based memory distortion. Journal of Cognitive Neuroscience, 20, 2226–2237.PubMedGoogle Scholar
  5. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: The medial frontal cortex and social cognition. Nature Reviews. Neuroscience, 7, 268–277.PubMedGoogle Scholar
  6. Anderson, A. K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D. G., Glover, G., et al. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6, 196–202.PubMedGoogle Scholar
  7. Anderson, M. C., & Huddleston, E. (2012). Towards a cognitive and neurobiological model of motivated forgetting. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 53–120). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  8. Anderson, R. E. (1984). Did I do it or did I only imagine doing it? Journal of Experimental Psychology: General, 113, 594–613.Google Scholar
  9. Anisfeld, M., & Knapp, M. (1968). Association, synonymity, and directionality in false recognition. Journal of Experimental Psychology, 77, 171–179.PubMedGoogle Scholar
  10. Arnold, M. M., & Lindsay, D. S. (2002). Remembering remembering. Journal of Experimental Psychology. Learning, Memory, and Cognition, 28, 521–529.PubMedGoogle Scholar
  11. Awh, E., Jonides, J., Smith, E. E., Schumacher, E. H., Koeppe, R. A., & Katz, S. (1996). Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography. Psychological Science, 7, 25–31.Google Scholar
  12. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., & Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47, 907–918.PubMedGoogle Scholar
  13. Banaji, M. R., & Crowder, R. G. (1989). The bankruptcy of everyday memory. The American Psychologist, 44, 1185–1193.Google Scholar
  14. Barber, S. J., Gordon, R., & Franklin, N. (2009). Self-relevance and wishful thinking: Facilitation and distortion in source monitoring. Memory & Cognition, 37, 434–446.Google Scholar
  15. Barlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, England: Cambridge University Press.Google Scholar
  16. Baym, C. L., & Gonsalves, B. D. (2010). Comparison of neural activity that leads to true memories, false memories, and forgetting: An fMRI study of the misinformation effect. Cognitive, Affective, & Behavioral Neuroscience, 10, 339–348.Google Scholar
  17. Belli, R. F., & Loftus, E. F. (1994). Recovered memories of childhood abuse: A source monitoring perspective. In S. J. Lynn & J. W. Rhue (Eds.), Dissociations: Clinical and theoretical perspectives (pp. 415–433). New York: Guilford Press.Google Scholar
  18. Belli, R. F., Winkielman, P., Read, J. D., Schwarz, N., & Lynn, S. J. (1998). Recalling more childhood events leads to judgments of poorer memory: Implications for the recovered/false memory debate. Psychonomic Bulletin & Review, 5, 318–323.Google Scholar
  19. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I. R. (2007). Parietal lobe and episodic memory: Bilateral damage causes impaired free recall of autobiographical memory. The Journal of Neuroscience, 27, 14415–14423.PubMedGoogle Scholar
  20. Blumenfeld, R. S., & Ranganath, C. (2007). Prefrontal cortex and long-term memory encoding: An integrative review of findings from neuropsychology and neuroimaging. The Neuroscientist, 13, 280–291.PubMedGoogle Scholar
  21. Boggio, P. S., Fregni, F., Valasek, C., Ellwood, S., Chi, R., Gallate, J., et al. (2009). Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PloS One, 4, e4959. doi: 10.1371/journal.pone.0004959.PubMedGoogle Scholar
  22. Bor, D., Duncan, J., Wiseman, R. J., & Owen, A. M. (2003). Encoding strategies dissociate prefrontal activity from working memory demand. Neuron, 37, 361–367.PubMedGoogle Scholar
  23. Bransford, J. D., & Franks, J. J. (1971). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331–350.Google Scholar
  24. Bransford, J. D., & Johnson, M. K. (1972). Contextual prerequisites for understanding: Some investigations of comprehension and recall. Journal of Verbal Learning and Verbal Behavior, 11, 717–726.Google Scholar
  25. Bransford, J. D., & Johnson, M. K. (1973). Considerations of some problems of comprehension. In W. Chase (Ed.), Visual information processing (pp. 383–438). New York: Academic.Google Scholar
  26. Bremner, J. D., Randall, P., Scott, T. M., Bronen, R. A., Seibyl, J. P., Southwick, S. M., et al. (1995). MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. The American Journal of Psychiatry, 152, 973–981.PubMedGoogle Scholar
  27. Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., et al. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse: A preliminary report. Biological Psychiatry, 41, 23–32.PubMedGoogle Scholar
  28. Brewin, C. R. (2012). A theoretical framework for understanding recovered memory experiences. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 149–173). Vol. 58: Nebraska Symposium on Motivation. New York: Springer. Google Scholar
  29. Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117, 210–232.PubMedGoogle Scholar
  30. Brown, M. W., & Aggleton, J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience, 2, 51–61.PubMedGoogle Scholar
  31. Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46, 1813–1827.PubMedGoogle Scholar
  32. Cahill, L., Babinsky, R., Markowitsch, H. J., & McGaugh, J. L. (1995). The amygdala and emotional memory. Nature, 377, 295–296.PubMedGoogle Scholar
  33. Cahill, L., Haier, R. J., Fallon, J., Alkire, M. T., Tang, C., Keator, D., et al. (1996). Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proceedings for the National Academy of Sciences of the United States of America, 93, 8016–8021.Google Scholar
  34. Canli, T. (2004). Functional brain mapping of extraversion and neuroticism: Learning from individual differences in emotion processing. Journal of Personality, 72, 1105–1132.PubMedGoogle Scholar
  35. Canli, T., & Lesch, K. P. (2007). Long story short: The serotonin transporter in emotion regulation and social cognition. Nature Neuroscience, 10, 1103–1109.PubMedGoogle Scholar
  36. Canli, T., Zhao, Z., Brewer, J., Gabrieli, J. D., & Cahill, L. (2000). Event-related activation in the human amygdala associates with later memory for individual emotional experience. The Journal of Neuroscience, 20, RC99.PubMedGoogle Scholar
  37. Cansino, S., Maquet, P., Dolan, R. J., & Rugg, M. D. (2002). Brain activity underlying encoding and retrieval of source memory. Cerebral Cortex, 12, 1049–1056.Google Scholar
  38. Carmichael, L., Hogan, H. P., & Walter, A. A. (1932). An experimental study of the effect of language on the reproduction of visually perceived form. Journal of Experimental Psychology, 15, 73–86.Google Scholar
  39. Carstensen, L. L., & Mikels, J. A. (2005). At the intersection of emotion and cognition: Aging and the positivity effect. Current Directions in Psychological Science, 14, 117–121.Google Scholar
  40. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: A review of its functional anatomy and behavioural correlates. Brain, 129, 564–583.PubMedGoogle Scholar
  41. Ceci, S. J., Huffman, M., Smith, E., & Loftus, E. F. (1994). Repeatedly thinking about a non-event: Source misattributions among preschoolers. Consciousness and Cognition, 3, 388–407.Google Scholar
  42. Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory & Cognition, 24, 403–416.Google Scholar
  43. Chao, L. L., & Martin, A. (1999). Cortical regions associated with perceiving, naming, and knowing about colors. Journal of Cognitive Neuroscience, 11, 25–35.PubMedGoogle Scholar
  44. Chrobak, Q., & Zaragoza, M. S. (2009). The cognitive consequences of forced fabrication: Evidence from studies of eyewitness suggestibility. In W. Hirstein (Ed.), Confabulation: Views from neuroscience, psychiatry, psychology and philosophy (pp. 67–90). Cambridge, MA: MIT Press.Google Scholar
  45. Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46, 1828–1851.PubMedGoogle Scholar
  46. Clancy, S. A., McNally, R. J., Schacter, D. L., Lenzenweger, M. F., & Pitman, R. K. (2002). Memory distortion in people reporting abduction by aliens. Journal of Abnormal Psychology, 111, 455–461.PubMedGoogle Scholar
  47. Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: The case for the visual word form area. NeuroImage, 22, 466–476.PubMedGoogle Scholar
  48. Cramer, P. (1970). Semantic generalization: Demonstration of an associative gradient. Journal of Experimental Psychology, 83, 164–172.Google Scholar
  49. Cunningham, W. A., Raye, C. L., & Johnson, M. K. (2004). Implicit and explicit evaluation: FMRI correlates of valence, emotional intensity, and control in the processing of attitudes. Journal of Cognitive Neuroscience, 16, 1717–1729.PubMedGoogle Scholar
  50. D’Esposito, M., & Postle, B. R. (1999). The dependence of span and delayed-response performance on prefrontal cortex. Neuropsychologia, 37, 1303–1315.Google Scholar
  51. Damasio, A. R., Graff-Radford, N. R., Eslinger, P. J., Damasio, H., & Kassell, N. (1985). Amnesia following basal forebrain lesions. Archives of Neurology, 42, 263–271.PubMedGoogle Scholar
  52. Darsaud, A., Dehon, H., Lahl, O., Sterpenich, V., Boly, M., Dang-Vu, T., et al. (2011). Does sleep promote false memories? Journal of Cognitive Neuroscience, 23, 26–40.PubMedGoogle Scholar
  53. Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16, 693–700.PubMedGoogle Scholar
  54. Davachi, L., & Dobbins, I. G. (2008). Declarative memory. Current Directions in Psychological Science, 17, 112–118.PubMedGoogle Scholar
  55. Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal lobe processes build item and source memories. Proceedings of the National Academy of Sciences of the United States of America, 100, 2157–2162.PubMedGoogle Scholar
  56. de Quervain, D. J., Kolassa, I. T., Ertl, V., Onyut, P. L., Neuner, F., Elbert, T., et al. (2007). A deletion variant of the alpha2b-adrenoceptor is related to emotional memory in Europeans and Africans. Nature Neuroscience, 10, 1137–1139.PubMedGoogle Scholar
  57. Deese, J. (1959). On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology, 58, 17–22.PubMedGoogle Scholar
  58. Dehon, H., & Bredart, S. (2004). False memories: Young and older adults think of semantic associates at the same rate, but young adults are more successful at source monitoring. Psychology and Aging, 19, 191–197.PubMedGoogle Scholar
  59. DePrince, A. P., Allard, C. B., Oh, H., & Freyd, J. J. (2004). What’s in a name for memory errors? Implications and ethical issues arising from the use of the term “false memory” for errors in memory for details. Ethics & Behavior, 14, 201–233.Google Scholar
  60. DePrince, A., Brown, L., Cheit, R., Freyd, J., Gold, S. N., Pezdek, K., & Quina, K. (2012). Motivated forgetting and misremembering: Perspectives from Betrayal Trauma Theory. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 193–242). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  61. Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 466–503). London: Oxford University Press.Google Scholar
  62. Dobbins, I. G., & Han, S. (2006). Cue-versus probe-dependent prefrontal cortex activity during contextual remembering. Journal of Cognitive Neuroscience, 18, 1439–1452.PubMedGoogle Scholar
  63. Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separate neurocognitive components underlying episodic recognition. Neuropsychologia, 41, 318–333.PubMedGoogle Scholar
  64. Dobson, M., & Markham, R. (1993). Imagery ability and source monitoring: Implications for eyewitness memory. British Journal of Psychology, -84, 111–118.Google Scholar
  65. Doerksen, S., & Shimamura, A. P. (2001). Source memory enhancement for emotional words. Emotion, 1, 5–11.PubMedGoogle Scholar
  66. Dolcos, F., LaBar, K. S., & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42, 855–863.PubMedGoogle Scholar
  67. Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. Journal of Neuroscience, 26, 2072–2079.PubMedGoogle Scholar
  68. Donaldson, D. I., Wheeler, M. E., & Petersen, S. E. (2010). Remember the source: Dissociating frontal and parietal contributions to episodic memory. Journal of Cognitive Neuroscience, 22, 377–391.PubMedGoogle Scholar
  69. Dougal, S., & Rotello, C. M. (2007). “Remembering” emotional words is based on response bias, not recollection. Psychonomic Bulletin & Review, 14, 423–429.Google Scholar
  70. Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293, 2470–2473.PubMedGoogle Scholar
  71. Duarte, A., Hayasaka, S., Du, A., Schuff, N., Jahng, G. H., Kramer, J., et al. (2006). Volumetric correlates of memory and executive function in normal elderly, mild cognitive impairment and Alzheimer’s disease. Neuroscience Letters, 406, 60–65.PubMedGoogle Scholar
  72. Durso, F. T., & Johnson, M. K. (1980). The effects of orienting tasks on recognition, recall, and modality confusion of pictures and words. Journal of Verbal Learning and Verbal Behavior, 19, 416–429.Google Scholar
  73. Eichenbaum, H., & Cohen, N. J. (2001). From conditioning to conscious recollection: Memory systems of the brain. Oxford: Oxford University Press.Google Scholar
  74. Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.PubMedGoogle Scholar
  75. Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149–1152.PubMedGoogle Scholar
  76. Epstein, R. A., & Higgins, J. S. (2007). Differential parahippocampal and retrosplenial involvement in three types of visual scene recognition. Cerebral Cortex, 17, 1680–1693.PubMedGoogle Scholar
  77. Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598–601.PubMedGoogle Scholar
  78. Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., et al. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44, 1043–1055.PubMedGoogle Scholar
  79. Finke, R. A., Johnson, M. K., & Shyi, G. C.-W. (1988). Memory confusions for real and imagined completions of symmetrical visual patterns. Memory & Cognition, 16, 133–137.Google Scholar
  80. Foley, M. A., & Johnson, M. K. (1985). Confusions between memories for performed and imagined actions: A developmental comparison. Child Development, 56, 1145–1155.PubMedGoogle Scholar
  81. Foley, M. A., Johnson, M. K., & Raye, C. L. (1983). Age-related changes in confusion between memories for thoughts and memories for speech. Child Development, 54, 51–60.PubMedGoogle Scholar
  82. Fuster, J. M. (2002). Frontal lobe and cognitive development. Journal of Neurocytology, 31, 373–385.PubMedGoogle Scholar
  83. Gallate, J., Chi, R., Ellwood, S., & Snyder, A. (2009). Reducing false memories by magnetic pulse stimulation. Neuroscience Letters, 449, 151–154.PubMedGoogle Scholar
  84. Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2004). Brain areas underlying visual mental imagery and visual perception: An fMRI study. Brain Research. Cognitive Brain Research, 20, 226–241.PubMedGoogle Scholar
  85. Garry, M., Manning, C., Loftus, E. F., & Sherman, S. J. (1996). Imagination inflation: Imagining a childhood event inflates confidence that it occurred. Psychonomic Bulletin and Review, 3, 208–214.Google Scholar
  86. Geraerts, E. (2012). Cognitive underpinnings of recovered memories of childhood abuse. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 175–191). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  87. Geraerts, E., Lindsay, D. S., Merckelbach, H., Jelicic, M., Raymaekers, L., Arnold, M. M., et al. (2009). Cognitive mechanisms underlying recovered-memory experiences of childhood sexual abuse. Psychological Science, 20, 92–98.PubMedGoogle Scholar
  88. Geraerts, E., Schooler, J. W., Merckelbach, H., Jelicic, M., Hauer, B. J., & Ambadar, Z. (2007). The reality of recovered memories: Corroborating continuous and discontinuous memories of childhood sexual abuse. Psychological Science, 18, 564–568.PubMedGoogle Scholar
  89. Giovanello, K. S., Schnyer, D. M., & Verfaellie, M. (2004). A critical role for the anterior hippocampus in relational memory: Evidence from an fMRI study comparing associative and item recognition. Hippocampus, 14, 5–8.PubMedGoogle Scholar
  90. Glisky, E. L., & Kong, L. L. III. (2008). Do young and older adults rely on different processes in source memory tasks? A neuropsychological study. Journal of Experimental Psychology. Learning, Memory, and Cognition, 34, 809–822.PubMedGoogle Scholar
  91. Goff, L. M., & Roediger, H. L. III (1998). Imagination inflation for action events: Repeated imaginings lead to illusory recollections. Memory & Cognition, 26, 20–33.Google Scholar
  92. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.PubMedGoogle Scholar
  93. Gogtay, N., Nugent, T. F., 3rd, Herman, D. H., Ordonez, A., Greenstein, D., Hayashi, K. M., et al. (2006). Dynamic mapping of normal human hippocampal development. Hippocampus, 16, 664–672.PubMedGoogle Scholar
  94. Goldberg, R. F., Perfetti, C. A., & Schneider, W. (2006). Perceptual knowledge retrieval activates sensory brain regions. Journal of Neuroscience, 26, 4917–4921.PubMedGoogle Scholar
  95. Goldman-Rakic, P. S., & Selemon, L. D. (1997). Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophrenia Bulletin, 23, 437–458.PubMedGoogle Scholar
  96. Gonsalves, B., Reber, P. J., Gitelman, D. R., Parrish, T. B., Mesulam, M. M., & Paller, K. A. (2004). Neural evidence that vivid imagining can lead to false remembering. Psychological Science, 15, 655–660.PubMedGoogle Scholar
  97. Gordon, R., Franklin, N., & Beck, J. (2005). Wishful thinking and source monitoring. Memory & Cognition, 33, 418–429.Google Scholar
  98. Greenberg, D. L. (2004). President Bush’s false ‘flashbulb’ memory of 9/11/01. Applied Cognitive Psychology, 18, 363–370.Google Scholar
  99. Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 1409–1422.PubMedGoogle Scholar
  100. Grossman, R., Yehuda, R., Golier, J., McEwen, B., Harvey, P., & Maria, N. S. (2006). Cognitive effects of intravenous hydrocortisone in subjects with PTSD and healthy control subjects. Annals of the New York Academy of Sciences, 1071, 410–421.PubMedGoogle Scholar
  101. Hamann, S. B., Ely, T. D., Grafton, S. T., & Kilts, C. D. (1999). Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nature Neuroscience, 2, 289–293.PubMedGoogle Scholar
  102. Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.PubMedGoogle Scholar
  103. Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1989). Aging and source monitoring. Psychology and Aging, 4, 106–112.PubMedGoogle Scholar
  104. Hashtroudi, S., Johnson, M. K., & Chrosniak, L. D. (1990). Aging and qualitative characteristics of memories for perceived and imagined complex events. Psychology and Aging, 5, 119–126.PubMedGoogle Scholar
  105. Henke, K., Buck, A., Weber, B., & Wieser, H. G. (1997). Human hippocampus establishes associations in memory. Hippocampus, 7, 249–256.PubMedGoogle Scholar
  106. Henkel, L. A. (2004). Erroneous memories arising from repeated attempts to remember. Journal of Memory and Language, 50, 26–46.Google Scholar
  107. Henkel, L. A. (2008). Maximizing the benefits and minimizing the costs of repeated memory tests for older adults. Psychology and Aging, 23, 250–262.PubMedGoogle Scholar
  108. Henkel, L. A., & Coffman, K. J. (2004). Memory distortions in coerced false confessions: A source monitoring framework analysis. Applied Cognitive Psychology, 18, 567–588.Google Scholar
  109. Henkel, L. A., Franklin, N., & Johnson, M. K. (2000). Cross-modal source monitoring confusions between perceived and imagined events. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26, 321–335.PubMedGoogle Scholar
  110. Henry, M., Fishman, J. R., & Youngner, S. J. (2007). Propranolol and the prevention of posttraumatic stress disorder: Is it wrong to erase the ‘sting’ of bad memories? The American Journal of Bioethics, 7, 12–20.PubMedGoogle Scholar
  111. Hertel, P. T. (2000). The cognitive-initiative account of depression-related impairments in memory. In D. Medin (Ed.), The psychology of learning and motivation: Advances in research theory (Vol. 39, pp. 47–71). San Diego, CA: Academic.Google Scholar
  112. Hirst, W., Phelps, E. A., Buckner, R. L., Budson, A. E., Cuc, A., Gabrieli, J. D. E. et al. (2009). Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention. Journal of Experimental Psychology. General, 138, 161–176.PubMedGoogle Scholar
  113. Hurlemann, R., Walter, H., Rehme, A. K., Kukolja, J., Santoro, S. C., Schmidt, C., et al. (2010). Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol. Psychological Medicine, 40, 1839–1848.Google Scholar
  114. Hyman, I. E., Jr., & Billings, F.J. (1998). Individual differences and the creation of false childhood memories. Memory, 6, 1–20.PubMedGoogle Scholar
  115. Hyman, I. E., Jr., & Pentland, J. (1996). The role of mental imagery in the creation of false childhood memories. Journal of Memory and Language, 35, 101–117.Google Scholar
  116. James, W. (1892). Psychology: Briefer course. New York: Henry Holt.Google Scholar
  117. Johnson, M. K. (1977). What is being counted none the less? In I. M. Birnbaum & E. S. Parker (Eds.), Alcohol and human memory (pp. 43–50). Hillsdale, NJ: Erlbaum.Google Scholar
  118. Johnson, M. K. (1983). A multiple-entry, modular memory system. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 17, pp. 81–123). New York: Academic.Google Scholar
  119. Johnson, M. K. (1991). Reflection, reality monitoring, and the self. In R. Kunzendorf (Ed.), Mental imagery (pp. 3–16). New York: Plenum.Google Scholar
  120. Johnson, M. K. (1996). Fact, fantasy, and public policy. In D. Hermann, C. McEvoy, P. Hertzog, P. Hertel, & M. K. Johnson (Eds.), Basic and applied memory research: Theory in context (Vol. 1, pp. 83–103). Mahwah, NJ: Erlbaum.Google Scholar
  121. Johnson, M. K. (2006). Memory and reality. The American Psychologist, 61, 760–771.PubMedGoogle Scholar
  122. Johnson, M. K. (l988). Discriminating the origin of information. In T. F. Oltmanns & B. A. Maher (Eds.), Delusional beliefs (pp. 34–65). New York: Wiley.Google Scholar
  123. Johnson, M. K., Bransford, J. D., & Solomon, S. K. (1973). Memory for tacit implications of sentences. Journal of Experimental Psychology, 98, 203–205.Google Scholar
  124. Johnson, M. K., Foley, M. A., & Leach, K. (1988). The consequences for memory of imagining in another person’s voice. Memory & Cognition, 16, 337–342.Google Scholar
  125. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 3–28.PubMedGoogle Scholar
  126. Johnson, M. K., Hayes, S. M., D’Esposito, M., & Raye, C. L. (2000). Confabulation. In F. Boller, J. Grafman (Series Eds.), & L. S. Cermak (Vol. Ed.), Handbook of neuropsychology: Vol. 2. Memory and its disorders (2nd ed., pp. 383–407). Amsterdam: Elsevier Science.Google Scholar
  127. Johnson, M. K., & Hirst, W. (1993). MEM: Memory subsystems as processes. In A. F. Collins, S. E. Gathercole, M. A. Conway, & P. E. Morris (Eds.), Theories of memory (pp. 241–286). East Sussex, England: Erlbaum.Google Scholar
  128. Johnson, M. K., Kahan, T. L., & Raye, C. L. (1984). Dreams and reality monitoring. Journal of Experimental Psychology. General, 113, 329–344.PubMedGoogle Scholar
  129. Johnson, M. K., Kim, J. K., & Risse, G. (1985). Do alcoholic Korsakoff’s syndrome patients acquire affective reactions? Journal of Experimental Psychology: Learning, Memory, and Cognition, 11, 22–36.PubMedGoogle Scholar
  130. Johnson, M. R., Mitchell, K. J., Raye, C. L., D’Esposito, M., & Johnson, M. K. (2007). A brief thought can modulate activity in extrastriate visual areas: Top-down effects of refreshing just-seen visual stimuli. NeuroImage, 37, 290–299.PubMedGoogle Scholar
  131. Johnson, M. K., & Multhaup, K. S. (1992). Emotion and MEM. In S.-A. Christianson (Ed.), The handbook of emotion and memory: Current research and theory (pp. 33–66). Hillsdale, NJ: Erlbaum Associates.Google Scholar
  132. Johnson, M. K., Nolde, S. F., & De Leonardis, D. M. (1996). Emotional focus and source monitoring. Journal of Memory and Language, 35, 135–156.Google Scholar
  133. Johnson, M. K., & Raye, C. L. (1981). Reality monitoring. Psychological Review, 88, 67–85.Google Scholar
  134. Johnson, M. K., & Raye, C. L. (2000). Cognitive and brain mechanisms of false memories and beliefs. In D. L. Schacter & E. Scarry (Eds.), Memory, brain, and belief (pp. 35–86). Cambridge, MA: Harvard University Press.Google Scholar
  135. Johnson, M. K., Raye, C. L., Mitchell, K. J., Touryan, S. R., Greene, E. J., & Nolen-Hoeksema, S. (2006). Dissociating medial frontal and posterior cingulate activity during self-reflection. Social Cognitive and Affective Neuroscience, 1, 56–64.PubMedGoogle Scholar
  136. Johnson, M. K., Raye, C. L., Wang, A. Y., & Taylor, T. H. (1979). Fact and fantasy: The roles of accuracy and variability in confusing imaginations with perceptual experiences. Journal of Experimental Psychology. Human Learning and Memory, 5, 229–240.PubMedGoogle Scholar
  137. Johnson, M. K., & Reeder, J. A. (1997). Consciousness as meta-processing. In J. D. Cohen & J. W. Schooler (Eds.), Scientific approaches to consciousness (pp. 261–293). Mahwah, NJ: Erlbaum.Google Scholar
  138. Johnson, M. K., & Sherman, S. J. (1990). Constructing and reconstructing the past and the future in the present. In E. T. Higgins & R. M. Sorrentino (Eds.), Handbook of motivation and social cognition: Foundations of social behavior (pp. 482–526). New York: Guilford Press.Google Scholar
  139. Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139, 181–193.PubMedGoogle Scholar
  140. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for the perception of faces. Journal of Neuroscience, 17, 4302–4311.PubMedGoogle Scholar
  141. Kellenbach, M. L., Brett, M., & Patterson, K. (2001). Large, colorful, or noisy? Attribute- and modality-specific activations during retrieval of perceptual attribute knowledge. Cognitive, Affective, & Behavioral Neuroscience, 1, 207–221.Google Scholar
  142. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? an event-related fMRI study. Journal of Cognitive Neuroscience, 14, 785–794.PubMedGoogle Scholar
  143. Kensinger, E. A. (2007). Negative emotion enhances memory accuracy: Behavioral and neuroimaging evidence. Current Directions in Psychological Science, 16, 213–218.Google Scholar
  144. Kensinger, E. A. (2009). Remembering the details: Effects of emotion. Emotion Review, 1, 99–113.PubMedGoogle Scholar
  145. Kensinger, E. A., Clarke, R. J., & Corkin, S. (2003). What neural correlates underlie successful encoding and retrieval? A functional magnetic resonance imaging study using a divided attention paradigm. Journal of Neuroscience, 23, 2407–2415.PubMedGoogle Scholar
  146. Kensinger, E. A., & Corkin, S. (2003). Memory enhancement for emotional words: Are emotional words more vividly remembered than neutral words? Memory and Cognition, 31, 1169–1180.Google Scholar
  147. Kensinger, E. A., & Schacter, D. L. (2006a). Amygdala activity is associated with the successful encoding of item, but not source, information for positive and negative stimuli. Journal of Neuroscience, 26, 2564–2570.PubMedGoogle Scholar
  148. Kensinger, E. A., & Schacter, D. L. (2006b). Neural processes underlying memory attribution on a reality-monitoring task. Cerebral Cortex, 16, 1126–1133.PubMedGoogle Scholar
  149. Kensinger, E. A., & Schacter, D. L. (2008a). Memory and emotion. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), The handbook of emotions (3rd ed., pp. 601–617). New York: Guilford.Google Scholar
  150. Kensinger, E. A., & Schacter, D. L. (2008b). Neural processes supporting young and older adults’ emotional memories. Journal of Cognitive Neuroscience, 20, 1–13.Google Scholar
  151. Kihlstrom, J. F. (2004). An unbalanced balancing act: Blocked, recovered, and false memories in the laboratory and clinic. Clinical Psychology: Science & Practice, 11, 34–41.Google Scholar
  152. Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20, 2091–2099.PubMedGoogle Scholar
  153. Kindt, M., Soeter, M., & Vervliet, B. (2009). Beyond extinction: erasing human fear responses and preventing the return of fear. Nature Neuroscience, 12, 256–258.PubMedGoogle Scholar
  154. Kroes, M. C. W., Strange, B. A., & Dolan, R. J. (2010). B-Adrenergic blockade during memory retrieval in humans evokes a sustained reduction of declarative emotional memory enhancement. Journal of Neuroscience, 30, 3959–3963.PubMedGoogle Scholar
  155. LaBar, K. S., & Phelps, E. A. (1998). Arousal-mediated memory consolidation: Role of the medial temporal lobe in humans. Psychological Science, 9, 490–493.Google Scholar
  156. Lampinen, J. M., Neuschatz, J. S., & Payne, D. G. (1999). Source attributions and false memories: A test of the demand characteristics account. Psychonomic Bulletin & Review, 6, 130–135.Google Scholar
  157. LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155–184.PubMedGoogle Scholar
  158. Legault, E., & Laurence, J.-R. (2007). Recovered memories of childhood sexual abuse: Social worker, psychologist, and psychiatrist reports of beliefs, practices and cases. Australian Journal of Clinical and Experimental Hypnosis, 35, 111–133.Google Scholar
  159. Lepage, M., Ghaffar, O., Nyberg, L., & Tulving, E. (2000). Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences of the United States of America, 97, 506–511.PubMedGoogle Scholar
  160. Lindsay, D. S. (2008). Source Monitoring. In J. Byrne (Series Ed.) & H. L. Roediger, III (Vol. Ed.), Cognitive psychology of memory. Learning and memory: A comprehensive reference (Vol. 2, pp. 325–348). Oxford: Elsevier.Google Scholar
  161. Lindsay, D. S., Hagen, L., Read, J. D., Wade, K. A., & Garry, M. (2004). True photographs and false memories. Psychological Science, 15, 149–154.PubMedGoogle Scholar
  162. Lindsay, D. S., & Johnson, M. K. (1989). The eyewitness suggestibility effect and memory for source. Memory & Cognition, 17, 349–358.Google Scholar
  163. Lindsay, D. S., Johnson, M. K., & Kwon, P. (1991). Developmental changes in memory source monitoring. Journal of Experimental Child Psychology, 52, 297–318.PubMedGoogle Scholar
  164. Lindsay, D. S., & Read, J. D. (1994). Psychotherapy and memories of childhood sexual abuse: A cognitive perspective. Applied Cognitive Psychology, 8, 281–338.Google Scholar
  165. Lindsay, D. S., & Read, J. D. (1995). “Memory work” and recovered memories of CSA: scientific evidence and pubic, professional, and personal issues. Psychology, Public Policy and the Law, 1, 846–908.Google Scholar
  166. Loftus, E. F. (2004). Dispatch from the (un)civil memory wars. The Lancet, 364, 20–21.Google Scholar
  167. Loftus, E. F. (2005). Planting misinformation in the human mind: A 30-year investigation of the malleability of memory. Learning and Memory, 12, 361–366.PubMedGoogle Scholar
  168. Loftus, E. F., & Davis, D. (2006). Recovered memories. Annual Review of Clinical Psychology, 2, 469–498.PubMedGoogle Scholar
  169. Loftus, E. F., Miller, D. G., & Burns, H. J. (1978). Semantic integration of verbal information into a visual memory. Journal of Experimental Psychology. Human Learning and Memory, 4, 19–31.PubMedGoogle Scholar
  170. Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13, 585–589.Google Scholar
  171. Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25, 720–725.Google Scholar
  172. Lundstrom, B. N., Petersson, K. M., Andersson, J., Johansson, M., Fransson, P., & Ingvar, M. (2003). Isolating the retrieval of imagined pictures during episodic memory: Activation of the left precuneus and left prefrontal cortex. NeuroImage, 20, 1934–1943.PubMedGoogle Scholar
  173. Lyle, K. B., & Johnson, M. K. (2006). Importing perceived features into false memories. Memory, 14, 197–213.PubMedGoogle Scholar
  174. Lyle, K. B., & Johnson, M. K. (2007). Source misattributions may increase the accuracy of source judgments. Memory & Cognition, 35, 1024–1033.Google Scholar
  175. Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial prefrontal activity predicts memory for self. Cerebral Cortex, 14, 647–654.PubMedGoogle Scholar
  176. Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., et al. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the Natural Academy of Science USA, 92, 8135–8139.Google Scholar
  177. Mangels, J. A., Gershberg, F. B., Shimamura, A. P., & Knight, R. T. (1996). Impaired retrieval from remote memory in patients with frontal lobe damage. Neuropsychology, 10, 32–41.Google Scholar
  178. Manuck, S. B., Brown, S. M., Forbes, E. E., & Hariri, A. R. (2007). Temporal stability of individual differences in amygdala reactivity. The American Journal of Psychiatry, 164, 1613–1614.PubMedGoogle Scholar
  179. Marsh, R. L., & Hicks, J. L. (1998). Test formats change source-monitoring decision processes. Journal of Experimental Psychology. Learning, Memory, and Cognition, 24, 1137–1151.Google Scholar
  180. Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. Current Opinion in Neurobiology, 11, 194–201.PubMedGoogle Scholar
  181. Mather, M. (2007). Emotional arousal and memory binding: An object-based framework. Perspectives on Psychological Science, 2, 33–52.Google Scholar
  182. Mather, M. (2009). When emotion intensifies memory interference. Psychology of Learning and Motivation, 51, 101–120.Google Scholar
  183. Mather, M., & Carstensen, L. L. (2005). Aging and motivated cognition: The positivity effect in attention and memory. Trends in Cognitive Science, 9, 496–502.Google Scholar
  184. Mather, M., Henkel, L. A., & Johnson, M. K. (1997). Evaluating characteristics of false memories: Remember/Know judgments and memory characteristics questionnaire compared. Memory & Cognition, 25, 826–837.Google Scholar
  185. Mather, M., Mitchell, K. J., Raye, C. L., Novak, D. L., Greene, E. J., & Johnson, M. K. (2006). Emotional arousal can impair feature binding in working memory. Journal of Cognitive Neuroscience, 18, 614–625.PubMedGoogle Scholar
  186. McDaniel, M. A., Lyle, K. B., Butler, K. M., & Dornburg, C. C. (2008). Age-related deficits in reality monitoring of action memories. Psychology and Aging, 23, 646–656.PubMedGoogle Scholar
  187. McGaugh, J. L. (2004). The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annual Review of Neuroscience, 27, 1–28.Google Scholar
  188. McNally, R. J. (2003). Progress and controversy in the study of posttraumatic stress disorder. Annual Review of Psychology, 54, 229–252.PubMedGoogle Scholar
  189. McNally, R. J. (2012). Searching for repressed memory. In R. F. Belli (Ed.), True and false recovered memories: Toward a reconciliation of the debate (pp. 121–147). Vol. 58: Nebraska Symposium on Motivation. New York: Springer.Google Scholar
  190. Milner, B., Squire, L. R., & Kandel, E. R. (1998). Cognitive neuroscience and the study of memory. Neuron, 20, 445–468.PubMedGoogle Scholar
  191. Mitchell, K. J., & Johnson, M. K. (2000). Source monitoring: Attributing mental experiences. In E. Tulving & F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 179–195). New York: Oxford University Press.Google Scholar
  192. Mitchell, K. J., & Johnson, M. K. (2009). Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory? Psychological Bulletin, 135, 638–677.PubMedGoogle Scholar
  193. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197–206.PubMedGoogle Scholar
  194. Mitchell, K. J., Johnson, M. K., Raye, C. L., & Greene, E. J. (2004). Prefrontal cortex activity associated with source monitoring in a working memory task. Journal of Cognitive Neuroscience, 16, 921–934.PubMedGoogle Scholar
  195. Mitchell, K. J., Raye, C. L., Johnson, M. K., & Greene, E. J. (2006). An fMRI investigation of short-term source memory in young and older adults. NeuroImage, 30, 627–633.PubMedGoogle Scholar
  196. Mitchell, K. J., & Zaragoza, M. S. (2001). Contextual overlap and eyewitness suggestibility. Memory & Cognition, 29, 616–626.Google Scholar
  197. Morgan, C. A., III, Hazlett, G., Doran, A., Garrett, S., Hoyt, G., Thomas, P., et al. (2004). Accuracy of eyewitness memory for persons encountered during exposure to highly intense stress. International Journal of Law and Psychiatry, 27, 265–279.PubMedGoogle Scholar
  198. Moscovitch, M. (1995). Recovered consciousness: A hypothesis concerning modularity and episodic memory. Journal of Clinical and Experimental Neuropsychology, 17, 276–290.PubMedGoogle Scholar
  199. Murray, L. J., & Ranganath, C. (2007). The dorsolateral prefrontal cortex contributes to successful relational memory encoding. Journal of Neuroscience, 27, 5515–5522.PubMedGoogle Scholar
  200. Neisser, U., & Harsch, N. (1992). Phantom flashbulbs: False recollections of hearing the news about Challenger. In E. Winograd & U. Neisser (Eds.), Affect and accuracy in recall: Studies of “flashbulb” memories (Vol. 4, pp. 9–31). New York: Cambridge University Press.Google Scholar
  201. Nelson, K. (1993). The psychological and social origins of autobiographical memory. Psychological Science, 4, 7–14.Google Scholar
  202. Nelson, K., & Fivush, R. (2004). The emergence of autobiographical memory: A social cultural developmental theory. Psychological Review, 111, 486–511.PubMedGoogle Scholar
  203. Nestor, P. G., Kubicki, M., Kuroki, N., Gurrera, R. J., Niznikiewicz, M., Shenton, M. E., et al. (2007). Episodic memory and neuroimaging of hippocampus and fornix in chronic schizophrenia. Psychiatry Research: Neuroimaging, 155, 21–28.PubMedGoogle Scholar
  204. Newcombe, N. S., Lloyd, M. E., & Ratliff, K. R. (2007). Development of episodic and autobiographical memory: A cognitive neuroscience perspective. In R. V. Kail (Ed.), Advances in child development and behavior (Vol. 35, pp. 37–85). San Diego, CA: Elsevier.Google Scholar
  205. Nolde, S. F., Johnson, M. K., & D’Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. NeuroReport, 9, 3509–3514.PubMedGoogle Scholar
  206. Norman, K. A., & Schacter, D. L. (1997). False recognition in younger and older adults: Exploring the characteristics of illusory memories. Memory & Cognition, 25, 838–848.Google Scholar
  207. O’Craven, K. M., & Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12, 1013–1023.PubMedGoogle Scholar
  208. Ochsner, K. N. (2000). Are affective events richly recollected or simply familiar? The experience and process of recognizing feelings past. Journal of Experimental Psychology. General, 129, 242–261.PubMedGoogle Scholar
  209. Okado, Y., & Stark, C. (2003). Neural processing associated with true and false memory retrieval. Cognitive, Affective, & Behavioral Neuroscience, 3, 323–334.Google Scholar
  210. Okado, Y., & Stark, C. E. L. (2005). Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12, 3–11.Google Scholar
  211. Park, S., Chun, M. M., & Johnson, M. K. (2010). Refreshing and integrating visual scenes in scene-selective cortex. Journal of Cognitive Neuroscience, 22, 2813–2822.PubMedGoogle Scholar
  212. Parker, S., Garry, M., Engle, R. W., Harper, D. N., & Clifasefi, S. L. (2008). Psychotropic placebos reduce the misinformation effect by increasing monitoring at test. Memory, 16, 410–419.PubMedGoogle Scholar
  213. Payne, J. D., Jackson, E. D., Hoscheidt, S., Ryan, L., Jacobs, W. J., & Nadel, L. (2007). Stress administered prior to encoding impairs neutral but enhances emotional long-term episodic memories. Learning & Memory, 14, 861–868.Google Scholar
  214. Paz-Alonso, P. M., Ghetti, S., Donohue, S. E., Goodman, G. S., & Bunge, S. A. (2008). Neurodevelopmental correlates of true and false recognition. Cerebral Cortex, 18, 2208–2216.PubMedGoogle Scholar
  215. Pezdek, K., & Lam, S. (2007). What research paradigms have cognitive psychologists used to study “false memory,” and what are the implications of these choices? Consciousness and Cognition, 16, 2–17.PubMedGoogle Scholar
  216. Pezdek, K., & Roe, C. (1995). The effect of memory trace strength on suggestibility. Journal of Experimental Child Psychology, 60, 116–128.Google Scholar
  217. Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53.PubMedGoogle Scholar
  218. Phelps, E. A., & Sharot, T. (2008). How (and why) emotion enhances the subjective sense of recollection. Current Directions in Psychological Science, 17, 147–152.PubMedGoogle Scholar
  219. Polusny, M. A., & Follette, V. M. (1996). Remembering childhood sexual abuse: A national survey of psychologists’ clinical practices, beliefs, and personal experiences. Professional Psychology: Research & Practice, 27, 41–52.Google Scholar
  220. Poole, D. A., Lindsay, D. S., Memon, A., & Bull, R. (1995). Psychotherapy and the recovery of memories of childhood sexual abuse: U.S. and British practitioners’ opinions, practices, and experiences. Journal of Consulting and Clinical Psychology, 63, 426–437.PubMedGoogle Scholar
  221. Porter, S., Birt, A. R., Yuille, J. C., & Lehman, D. R. (2000). Negotiating false memories: Interviewer and remember characteristics relate to memory distortion. Psychological Science, 11, 507–510.PubMedGoogle Scholar
  222. Porter, S., Yuille, J. C., & Lehman, D. R. (1999). The nature of real, implanted, and fabricated memories for emotional childhood events: Implications for the recovered memory debate. Law and Human Behavior, 23, 517–537.PubMedGoogle Scholar
  223. Puce, A., Allison, T., Gore, J. G., & McCarthy, G. (1995). Face-sensitive regions in human extrastriate cortex studied by functional MRI. Journal of Neurophysiology, 74, 1192–1199.PubMedGoogle Scholar
  224. Qin, J., Mitchell, K. J., Johnson, M. K., Krystal, J. H., Southwick, S. M., Rasmusson, A. M., et al. (2003). Reactions to and memories for the September 11, 2001 terrorist attacks in adults with posttraumatic stress disorder. Applied Cognitive Psychology, 17, 1081–1097.Google Scholar
  225. Ranganath, C. (2010). Binding items and contexts: The cognitive neuroscience of episodic memory. Current Directions In Psychological Science, 19, 131–137.Google Scholar
  226. Ranganath, C., & Blumenfeld, R. S. (2008). Prefrontal cortex and memory. In J. Byrne (Series Ed.), & H. Eichenbaum (Vol. Ed.), Learning and memory: A comprehensive reference: Vol. 3. Memory systems (pp. 261–280). Oxford: Elsevier.Google Scholar
  227. Ranganath, C., Cohen, M. X., & Brozinsky, C. J. (2005). Working memory maintenance contributes to long-term memory formation: Neural and behavioral evidence. Journal of Cognitive Neuroscience, 17, 994–1010.PubMedGoogle Scholar
  228. Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873.PubMedGoogle Scholar
  229. Ranganath, C., Johnson, M. K., & D’Esposito, M. (2000). Left anterior prefrontal activation increases with demands to recall specific perceptual information. The Journal of Neuroscience, 20, RC108.PubMedGoogle Scholar
  230. Ranganath, C., & Knight, R. T. (2003). Prefrontal cortex and episodic memory: Integrating findings from neuropsychology and event-related functional neuroimaging. In A. Parker, E. Wilding, & T. Bussey (Eds.), The cognitive neuroscience of memory encoding and retrieval (pp. 83–99). Philadelphia: Psychology Press.Google Scholar
  231. Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S. M., & D’Esposito, M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42, 2–13.PubMedGoogle Scholar
  232. Rasch, B., Spalek, K., Buholzer, S., Luechinger, R., Boesiger, P., Papassotiropoulos, A., et al. (2009). A genetic variation of the noradrenergic system is related to differential amygdala activation during encoding of emotional memories. Proceedings of the National Academy of Sciences of the United States of America, 106, 19191–19196.PubMedGoogle Scholar
  233. Raye, C. L., Johnson, M. K., Mitchell, K. J., Nolde, S. F., & D’Esposito, M. (2000). fMRI investigations of left and right PFC contributions to episodic remembering. Psychobiology, 28, 197–206.Google Scholar
  234. Raz, N., & Rodrigue, K. M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience and Biobehavioral Reviews, 30, 730–748.PubMedGoogle Scholar
  235. Roediger, H. L. III, & McDermott, K. B. (1995). Creating false memories: Remembering words that were not presented in lists. Journal of Experimental Psychology. Learning, Memory, and Cognition, 21, 803–814.Google Scholar
  236. Rogers, T. T., Hocking, J., Noppeney, U., Mechelli, A., Gorno-Tempini, M. L., Patterson, K., et al. (2006). Anterior temporal cortex and semantic memory: Reconciling findings from neuropsychology and functional imaging. Cognitive, Affective, & Behavioral Neuroscience, 6, 201–213.Google Scholar
  237. Schacter, D. L., Reiman, E., Curran, T., Yun, L. S., Bandy, D., McDermott, K. B., et al. (1996). Neuroanatomical correlates of veridical and illusory recognition memory: Evidence from positron emission tomography. Neuron, 17, 267–274.PubMedGoogle Scholar
  238. Schacter, D. L., & Slotnick, S. D. (2004). The cognitive neuroscience of memory distortion. Neuron, 44, 149–160.PubMedGoogle Scholar
  239. Schmolck, H., Buffalo, E. A., & Squire, L. R. (2000). Memory distortions develop over time: Recollections of the O.J. Simpson trial verdict after 15 and 32 months. Psychological Science, 11, 39–45.PubMedGoogle Scholar
  240. Schnider, A. (2008). The confabulating mind: How the brain creates reality. New York: OxfordUniversity Press.Google Scholar
  241. Schooler, J. W., Ambadar, Z., & Bendiksen, M. (1997). A cognitive corroborative case study approach for investigating discovered memories of sexual abuse. In D. S. Lindsay (Ed.), Recollections of trauma: Scientific evidence and clinical practice (pp. 379–387). New York: Plenum Press.Google Scholar
  242. Schooler, J. W., Bendiksen, M., & Ambadar, Z. (1997). Taking the middle line: Can we accommodate both fabricated and recovered memories of sexual abuse? In M. A. Conway (Ed.), Recovered memories and false memories (pp. 251–292). New York: Oxford University Press.Google Scholar
  243. Schooler, J. W., Gerhard, D., & Loftus, E. F. (1986). Qualities of the unreal. Journal of Experimental Psychology. Learning, Memory, and Cognition, 12, 171–181.PubMedGoogle Scholar
  244. Shallice, T., & Burgess, P. W. (1991). Higher-order cognitive impairments and frontal lobe lesions in man. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Frontal lobe function and dysfunction (pp. 125–138). New York: Oxford University Press.Google Scholar
  245. Sharot, T., Delgado, M. R., & Phelps, E. A. (2004). How emotion enhances the feeling of remembering. Nature Neuroscience, 7, 1376–1380.PubMedGoogle Scholar
  246. Sharot, T., Verfaellie, M., & Yonelinas, A. P. (2007). How emotion strengthens the recollective experience: A time-dependent hippocampal process. PloS One, 2, e1068. doi: 10.1371/journal.pone.0001068.PubMedGoogle Scholar
  247. Sharot, T., & Yonelinas, A. P. (2008). Differential time-dependent effects of emotion on recollective experience and memory for contextual information. Cognition, 106, 538–547.PubMedGoogle Scholar
  248. Shimamura, A. P. (1995). Memory and the prefrontal cortex. In J. Grafman, K. J. Holyoak, & F. Boller (Eds.), Structure and function of the human prefrontal cortex. Annals of the New York Academy of Sciences, 769, 151–159.Google Scholar
  249. Shimamura, A. P. (2000). Toward a cognitive neuroscience of metacognition. Consciousness and Cognition, 9, 313–323.PubMedGoogle Scholar
  250. Shobe, K. K., & Schooler, J. W. (2001). Discovering fact and fiction: Case-based analyses of authentic and fabricated memories of abuse. In G. M. Davies & T. Dalgleish (Eds.), Recovered memories: Seeking the middle ground (pp. 95–151). Chichester, England: Wiley.Google Scholar
  251. Simons, J. S., Henson, R. N. A., Gilbert, S. J., & Fletcher, P. C. (2008). Separable forms of reality monitoring supported by the anterior prefrontal cortex. Journal of Cognitive Neuroscience, 20, 447–457.PubMedGoogle Scholar
  252. Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E., & Olson, I. R. (2010). Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cerebral Cortex, 20, 479–485.PubMedGoogle Scholar
  253. Skinner, E. I., & Fernandes, M. A. (2007). Neural correlates of recollection and familiarity: A review of neuroimaging and patient data. Neuropsychologia, 45, 2163–2179.PubMedGoogle Scholar
  254. Slotnick, S. D., & Schacter, D. L. (2004). A sensory signature that distinguishes true from false memories. Nature Neuroscience, 7, 664–672.PubMedGoogle Scholar
  255. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657–1661.PubMedGoogle Scholar
  256. Spencer, T. J., Montaldi, D., Gong, Q.-Y., Roberts, N., & Mayes, A. R. (2009). Object priming and recognition memory: Dissociable effects in left frontal cortex at encoding. Neuropsychologia, 47, 2942–2947.PubMedGoogle Scholar
  257. Squire, L. R., & Knowlton, B. J. (2000). The medial temporal lobe, the hippocampus, and the memory systems of the brain. In M. Gazzaniga (Ed.), The new cognitive neurosciences (2nd ed., pp. 765–779). Cambridge, MA: MIT Press.Google Scholar
  258. Squire, L. R., Stark, C. E. L., & Clark, R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306.PubMedGoogle Scholar
  259. Staresina, B. P., & Davachi, L. (2006). Differential encoding mechanisms for subsequent associative recognition and free recall. The Journal of Neuroscience, 26, 9162–9172.PubMedGoogle Scholar
  260. Staresina, B. P., Gray, J. C., & Davachi, L. (2009). Event congruency enhances episodic memory encoding through semantic elaboration and relational binding. Cerebral Cortex, 19, 1198–1207.PubMedGoogle Scholar
  261. Stuss, D. T., & Levine, B. (2002). Adult clinical neuropsychology: Lessons from studies of the frontal lobes. Annual Review of Psychology, 53, 401–433.PubMedGoogle Scholar
  262. Suengas, A. G., & Johnson, M. K. (1988). Qualitative effects of rehearsal on memories for perceived and imagined complex events. Journal of Experimental Psychology. General, 117, 377–389.Google Scholar
  263. Summerfield, C., Greene, M., Wager, T., Egner, T., Hirsch, J., & Mangels, J. (2006). Neocortical connectivity during episodic memory formation. PLoS Biology, 4, e128. doi: 10.1371/journal.pbio.0040128.PubMedGoogle Scholar
  264. Sutherland, R., & Hayne, H. (2001). The effect of postevent information on adults’ eyewitness reports. Applied Cognitive Psychology, 15, 249–263.Google Scholar
  265. Talarico, J. M., & Rubin, D. C. (2003). Confidence, not consistency, characterizes flashbulb memories. Psychological Science, 14, 455–461.PubMedGoogle Scholar
  266. Thomas, A. K., Hannula, D. E., & Loftus, E. F. (2007). How self-relevant imagination affects memory for behavior. Applied Cognitive Psychology, 21, 69–86.Google Scholar
  267. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proceedings of the National Academy of Sciences, USA, 94, 14792–14797.Google Scholar
  268. Todd, R. M., & Anderson, A. K. (2009). The neurogenetics of remembering emotions past. Proceedings of the National Academy of Sciences of the United States of America, 106, 18881–18882.PubMedGoogle Scholar
  269. Tulving, E., & Schacter, D. L. (1990). Priming and human memory systems. Science, 247, 301–306.PubMedGoogle Scholar
  270. Turner, M. S., Simons, J. S., Gilbert, S. J., Frith, C. D., & Burgess, P. W. (2008). Distinct roles for lateral and medial rostral prefrontal cortex in source monitoring of perceived and imagined events. Neuropsychologia, 46, 1442–1453.PubMedGoogle Scholar
  271. Uncapher, M. R., Otten, L. J., & Rugg, M. D. (2006). Episodic encoding is more than the sum of its parts: An fMRI investigation of multifeatural contextual encoding. Neuron, 52, 547–556.PubMedGoogle Scholar
  272. Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: Insights from fMRI subsequent memory effects and dual attention theory. Neurobiology of Learning & Memory, 91, 139–154.PubMedGoogle Scholar
  273. Underwood, B. J. (1965). False recognition produced by implicit verbal responses. Journal of Experimental Psychology, 70, 122–129.PubMedGoogle Scholar
  274. Van Overwalle, F. (2009). Social cognition and the brain: A meta-analysis. Human Brain Mapping, 30, 829–858.PubMedGoogle Scholar
  275. Van Petten, C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: Review and meta-analysis. Neuropsychologia, 42, 1394–1413.PubMedGoogle Scholar
  276. van Stegeren, A. H. (2009). Imaging stress effects on memory: A review of neuroimaging studies. Canadian Journal of Psychiatry, 54, 16–27.Google Scholar
  277. van Stegeren, A. H., Goekoop, R., Everaerd, W., Scheltens, P., Barkhof, F., Kuijer, J. P. A., et al. (2005). Noradrenaline mediates amygdala activation in men and women during encoding of emotional material. NeuroImage, 24, 898–909.PubMedGoogle Scholar
  278. van Stegeren, A. H., Wolf, O. T., Everaerd, W., & Rombouts, S. A. R. B. (2008). Interaction of endogenous cortisol and noradrenaline in the human amygdala. In E. R. de Kloet, M. S. Oitzl, & E. Vermetten (Eds.), Progress in Brain Research. Stress, hormones, and posttraumatic stress disorder: Basic studies and clinical perspectives. Vol. 167 (pp. 263–268). Oxford: Elsevier.Google Scholar
  279. Verwoerd, J. R. L., Wessel, I., de Jong, P. J., & Nieuwenhuis, M. M. W. (2009). Preferential processing of visual trauma-film reminders predicts subsequent intrusive memories. Cognition and Emotion, 23, 1537–1551.Google Scholar
  280. Vilberg, K. L., & Rugg, M. D. (2007). Dissociation of the neural correlates of recognition memory according to familiarity, recollection, and amount of recollected information. Neuropsychologia, 45, 2216–2225.PubMedGoogle Scholar
  281. Vilberg, K. L., & Rugg, M. D. (2008). Memory retrieval and the parietal cortex: A review of evidence from a dual-process perspective. Neuropsychologia, 46, 1787–1799.PubMedGoogle Scholar
  282. Vinogradov, S., Luks, T. L., Schulman, B. J., & Simpson, G. V. (2008). Deficit in a neural correlate of reality monitoring in schizophrenia patients. Cerebral Cortex, 18, 2532–2539.PubMedGoogle Scholar
  283. Vinogradov, S., Luks, T. L., Simpson, G. V., Schulman, B. J., Glenn, S., & Wong, A. E. (2006). Brain activation patterns during memory of cognitive agency. NeuroImage, 31, 896–905.PubMedGoogle Scholar
  284. Wade, K. A., Sharman, S. J., Garry, M., Memon, A., Mazzoni, G., Merckelbach, H., et al. (2007). False claims about false memory research. Consciousness and Cognition, 16, 18–28.PubMedGoogle Scholar
  285. Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., et al. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191.PubMedGoogle Scholar
  286. Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453.PubMedGoogle Scholar
  287. Weinberger, D. R. (1988). Schizophrenia and the frontal lobe. Trends in Neurosciences, 11, 367–370.PubMedGoogle Scholar
  288. Weis, S., Specht, K., Klaver, P., Tendolkar, I., Willmes, K., Ruhlmann, J., et al. (2004). Process dissociation between contextual retrieval and item recognition. NeuroReport, 15, 2729–2733.PubMedGoogle Scholar
  289. Wheeler, M. E., & Buckner, R. L. (2004). Functional-anatomic correlates of remembering and knowing. NeuroImage, 21, 1337–1349.PubMedGoogle Scholar
  290. Wheeler, M. E., Petersen, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences of the United States of America, 97, 11125–11129.PubMedGoogle Scholar
  291. Williams, J. M. G., Barnhofer, T., Crane, C., Hermans, D., Raes, F., Watkins, E., et al. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133, 122–148.PubMedGoogle Scholar
  292. Zaragoza, M. S., Belli, R. S., & Payment, K. E. (2006). Misinformation effects and the suggestibility of eyewitness memory. In M. Garry & H. Hayne (Eds.), Do justice and let the sky fall: Elizabeth F. Loftus and her contributions to science, law, and academic freedom (pp. 35–63). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  293. Zaragoza, M. S., & Koshmider, J. W., III. (1989). Misled subjects may know more that their performance implies. Journal of Experimental Psychology. Learning, Memory, and Cognition, 15, 246–255.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Marcia K. Johnson
    • 1
  • Carol L. Raye
    • 1
  • Karen J. Mitchell
    • 1
  • Elizabeth Ankudowich
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations