Fuzzy Logic in Computer Science

  • Radim BelohlavekEmail author
  • Rudolf Kruse
  • Christian Moewes


Many researchers and practitioners in the field of artificial intelligence (and intelligent systems in particular) want to make computers smart. Unlike computers, human beings have great capacities to deal with ill-defined concepts, e.g., natural language. Even today, one wonders whether computers will ever be able to process vague information meaningfully. Fuzzy logic is such an approach to tackle this problem. In this chapter we therefore mainly introduce basic ideas and concepts of fuzzy logic. We discuss selected applications of fuzzy logic relevant to computer science and provide a list of references for further reading. The primary audience of the chapter are computer scientists and engineers.


Fuzzy Logic Fuzzy Rule Fuzzy Controller Fuzzy Cluster Classical Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



R. Belohlavek was supported by the ESF project No. CZ.1.07/2.3.00/20.0059 (co-financed by the European Social Fund and the state budget of the Czech Republic).


  1. Bezdek, J.C.: Fuzzy mathematics in pattern classification. PhD thesis, Cornell University, Itheca, NY, USA (1973)Google Scholar
  2. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (1981)zbMATHGoogle Scholar
  3. Bezdek, J.C., Keller, J., Krisnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing, The Handbooks of Fuzzy Sets, vol. 4. Kluwer Academic Publishers (1999)Google Scholar
  4. Boixader, D., Jacas, J.: Extensionality based approximate reasoning. International Journal of Approximate Reasoning 19(3–4), 221–230 (1998). DOI 10.1016/S0888-613X(98)00018-8zbMATHMathSciNetCrossRefGoogle Scholar
  5. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles, IFSR International Series on Systems Science and Engineering, vol. 20. Kluwer Academic Publishers (2002)Google Scholar
  6. Belohlavek, R., Klir, G.J.: On Elkan’s theorems: Clarifying their meaning via simple proofs: Research articles. International Journal of Intelligent Systems 22, 203–207 (2007). DOI 10.1002/int.v22:2. ACM ID: 1190438zbMATHCrossRefGoogle Scholar
  7. Belohlavek, R., Klir, G.J. (eds.): Concepts and Fuzzy Logic. MIT Press, Cambridge, MA, USA (2011)Google Scholar
  8. Belohlavek, R., Vychodil, V.: Fuzzy Equational Logic, Studies in Fuzziness and Soft Computing, vol. 186. Springer (2005)Google Scholar
  9. Belohlavek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Formal Concept Analysis, Lecture Notes in Computer Science, vol. 3874, pp. 45–60. Springer-Verlag (2006)Google Scholar
  10. Cheeseman, P.: An inquiry into computer understanding. Computational Intelligence 4, 58–66 (1988)CrossRefGoogle Scholar
  11. Cheeseman, P.: Probabilistic versus fuzzy reasoning. In: L.N.K. Kanal, Lemmer (eds.) UAI ’85: Proceedings of the First Annual Conference on Uncertainty in Artificial Intelligence. Elsevier, New York, NY, USA (1988)Google Scholar
  12. Cignoli, R., Esteva, F., Godo, L., Torrens, A.: Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Computing 4(2), 106–112 (2000). DOI 10.1007/s005000000044CrossRefGoogle Scholar
  13. Cordón, O., del Jesus, M.J., Herrera, F.: A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate Reasoning 20(1), 21–45 (1999). DOI 10.1016/ S0888-613X(00)88942-2Google Scholar
  14. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141(1), 5–31 (2004). DOI 10.1016/S0165-0114(03) 00111-8zbMATHMathSciNetCrossRefGoogle Scholar
  15. Dickerson, J.A., Kosko, B.: Fuzzy function approximation with ellipsoidal rules. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 26(4), 542–560 (1996). DOI 10.1109/3477.517030CrossRefGoogle Scholar
  16. Dubois, D., Prade, H.: The generalized modus ponens under sup-min composition – a theoretical study. In: M.M. Gupta, A. Kandel, W. Bandler, J.B. Kiszka (eds.) Approximate Reasoning in Expert Systems, pp. 217–232. Elsevier Science Publisher B.V. (North-Holland), Amsterdam, Netherlands (1985)Google Scholar
  17. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum Press, New York, NY, USA (1988)zbMATHGoogle Scholar
  18. Dubois, D., Prade, H.: Possibility theory as a basis for preference propagation in automated reasoning. In: 1992 IEEE International Conference on Fuzzy Systems, pp. 821–832. IEEE Press, New York, NY, USA (1992). DOI 10. 1109/FUZZY.1992.258765Google Scholar
  19. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. John Wiley & Sons, Ltd., New York, NY, USA (1973)zbMATHGoogle Scholar
  20. Elkan, C.: The paradoxical success of fuzzy logic. In: Proceedings of the 11th National Conference on Artificial Intelligence, pp. 698–703. AAAIPress/MIT Press, Cambridge, MA, USA (1993)Google Scholar
  21. Elkan, C.: The paradoxical success of fuzzy logic. IEEE Expert: Intelligent Systems and Their Applications 9, 3–8 (1994). DOI 10.1109/64.336150. ACM ID: 630036Google Scholar
  22. Gerla, G.: Fuzzy Logic: Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers, Dordrecht, Netherlands (2001)zbMATHGoogle Scholar
  23. Goguen, J.A.: The logic of inexact concepts. Synthese 19(3–4), 325–373 (1968). DOI 10.1007/BF00485654Google Scholar
  24. Gottwald, S.: A Treatise on Many-Valued Logics, Studies in Logic and Computation, vol. 9. Research Studies Press, Baldock, Hertfordshire, England (2001)Google Scholar
  25. Hájek, P.: Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4. Kluwer Academic Publishers, Boston, MA, USA (1998)CrossRefGoogle Scholar
  26. Hájek, P.: What is mathematical fuzzy logic. Fuzzy Sets and Systems 157(5), 597–603 (2006). DOI 10.1016/j.fss.2005.10.004zbMATHMathSciNetCrossRefGoogle Scholar
  27. Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition. John Wiley & Sons, Ltd., New York, NY, USA (1999)zbMATHGoogle Scholar
  28. Hühn, J.C., Hüllermeier, E.: FR3: a fuzzy rule learner for inducing reliable classifiers. IEEE Transactions on Fuzzy Systems 17(1), 138–149 (2009). DOI 10.1109/TFUZZ.2008.2005490CrossRefGoogle Scholar
  29. Keller, A., Kruse, R.: Fuzzy rule generation for transfer passenger analysis. In: L. Wang, S.K. Halgamuge, X. Yao (eds.) Proceedings of the 1st International Conference on Fuzzy Systems and Knowledge Discovery (FSDK’02), pp. 667–671. Orchid Country Club, Singapore (2002)Google Scholar
  30. Klawonn, F., Castro, J.L.: Similarity in fuzzy reasoning. Mathware & Soft Computing 2(3), 197–228 (1995)zbMATHMathSciNetGoogle Scholar
  31. Klawonn, F., Gebhardt, J., Kruse, R.: Fuzzy control on the basis of equality relations with an example from idle speed control. IEEE Transactions on Fuzzy Systems 3(3), 336–350 (1995). DOI 10.1109/91.413237CrossRefGoogle Scholar
  32. Klawonn, F., Kruse, R.: Equality relations as a basis for fuzzy control. Fuzzy Sets and Systems 54(2), 147–156 (1993). DOI 10.1016/0165-0114(93) 90272-JzbMATHMathSciNetCrossRefGoogle Scholar
  33. Klawonn, F., Kruse, R.: Automatic generation of fuzzy controllers by fuzzy clustering. In: 1995 IEEE International Conference on Systems, Man, and Cybernetics: Intelligent Systems for the 21st Century, vol. 3, pp. 2040–2045. IEEE Press, Vancouver, BC, Canada (1995). DOI 10.1109/ ICSMC.1995.538079Google Scholar
  34. Klawonn, F., Kruse, R.: Constructing a fuzzy controller from data. Fuzzy Sets and Systems 85(2), 177–193 (1997). DOI 10.1016/0165-0114(95)00350-9MathSciNetCrossRefGoogle Scholar
  35. Klawonn, F., Novák, V.: The relation between inference and interpolation in the framework of fuzzy systems. Fuzzy Sets and Systems 81(3), 331–354 (1996). DOI 10.1016/0165-0114(96)83710-9zbMATHMathSciNetCrossRefGoogle Scholar
  36. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  37. Klir, G.J.: Is there more to uncertainty than some probability theorists might have us belive? International Journal of General Systems 15(4), 347–378 (1989). DOI 10.1080/03081078908935057zbMATHCrossRefGoogle Scholar
  38. Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall, Upper Saddle River, NJ, USA (1995)zbMATHGoogle Scholar
  39. Kosko, B.: Fuzziness vs. probability. International Journal of General Systems 17(2), 211–240 (1990). DOI 10.1080/03081079008935108Google Scholar
  40. Kruse, R., Döring, C., Lesot, M.: Fundamentals of fuzzy clustering. In: J.V. de Oliveira, W. Pedrycz (eds.) Advances in Fuzzy Clustering and its Applications, pp. 3–30. John Wiley & Sons, Ltd., Chichester, UK (2007)Google Scholar
  41. Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of Fuzzy Systems. John Wiley & Sons Ltd, Chichester, UK (1994)Google Scholar
  42. Kuncheva, L.I.: Fuzzy Classifier Design, Studies in Fuzziness and Soft Computing, vol. 49. Physica-Verlag, Heidelberg, New York (2000)Google Scholar
  43. Lindley, D.V.: The probability approach to the treatment of uncertainty in artificial intelligence and expert systems. Statistical Science 2(1), 17–24 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  44. Loginov, V.I.: Probability treatment of zadeh membership functions and their use in pattern recognition. Engineering Cybernetics 4(2), 68–69 (1966)Google Scholar
  45. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975). DOI 10.1016/S0020-7373(75)80002-2zbMATHCrossRefGoogle Scholar
  46. Moewes, C., Kruse, R.: Unification of fuzzy SVMs and rule extraction methods through imprecise domain knowledge. In: J.L. Verdegay, L. Magdalena, M. Ojeda-Aciego (eds.) Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU-08), pp. 1527–1534. Torremolinos (Málaga) (2008)Google Scholar
  47. Nauck, D., Klawonn, F., Kruse, R.: Foundations of Neuro-Fuzzy Systems. John Wiley & Sons, Inc. (1997)Google Scholar
  48. Nauck, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets and Systems 89(3), 277–288 (1997). DOI 10.1016/ S0165-0114(97)00009-2MathSciNetCrossRefGoogle Scholar
  49. Nauck, D., Kruse, R.: Neuro-fuzzy systems for function approximation. Fuzzy Sets and Systems 101(2), 261–271 (1999). DOI 10.1016/S0165-0114(98) 00169-9zbMATHMathSciNetCrossRefGoogle Scholar
  50. Novák, V., Perfilieva, I., Močkoř, J.: Mathematical Principles of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, Netherlands (1999)zbMATHCrossRefGoogle Scholar
  51. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets and Systems 138(2), 221–254 (2003). DOI 10.1016/S0165-0114(03) 00089-7MathSciNetCrossRefGoogle Scholar
  52. Pavelka, J.: On fuzzy logic i, II, III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 25, 45–52, 119–134, 447–464 (1979)Google Scholar
  53. Schröder, M., Petersen, R., Klawonn, F., Kruse, R.: Two paradigms of automotive fuzzy logic applications. In: M. Jamshidi, A. Titli, L. Zadeh, S. Boverie (eds.) Applications of Fuzzy Logic: Towards High Machine Intelligence Quotient Systems, Environmental and Intelligent Manufacturing Systems Series, vol. 9, pp. 153–174. Prentice-Hall, Inc., Upper Saddle River, NJ, USA (1997)Google Scholar
  54. Smith, N.J.J.: Vagueness and Degrees of Truth. Oxford University Press, New York, NY, USA (2009)Google Scholar
  55. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946). DOI 10.1126/science.103.2684.677zbMATHCrossRefGoogle Scholar
  56. Sudkamp, T.: Similarity, interpolation, and fuzzy rule construction. Fuzzy Sets and Systems 58(1), 73–86 (1993). DOI 10.1016/0165-0114(93) 90323-AMathSciNetCrossRefGoogle Scholar
  57. Sugeno, M., Yasukawa, T.: A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems 1(1), 7–31 (1993). DOI 10. 1109/TFUZZ.1993.390281CrossRefGoogle Scholar
  58. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1), 116–132 (1985)zbMATHGoogle Scholar
  59. van Deemter, K.: Not Exactly: In Praise of Vagueness. Oxford University Press, New York, NY, USA (2010)Google Scholar
  60. Wang, L., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics 22(6), 1414–1427 (1992). DOI 10.1109/21.199466MathSciNetCrossRefGoogle Scholar
  61. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965). DOI 10.1016/S0019-9958(65)90241-XzbMATHMathSciNetCrossRefGoogle Scholar
  62. Zadeh, L.A.: Probability measures of fuzzy events. Journal of Mathematical Analysis and Applications 23(2), 421–427 (1968). DOI 10.1016/ 0022-247X(68)90078-4zbMATHMathSciNetCrossRefGoogle Scholar
  63. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics 3(1), 28–44 (1973)zbMATHMathSciNetCrossRefGoogle Scholar
  64. Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30(3-4), 407–428 (1975). DOI 10.1007/BF00485052zbMATHCrossRefGoogle Scholar
  65. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1(1), 3–28 (1978). DOI 10.1016/0165-0114(78)90029-5. (Reprinted in Fuzzy Sets and Systems 100 (Supplement 1), 9-34, (1999))zbMATHMathSciNetCrossRefGoogle Scholar
  66. Zadeh, L.A.: A theory of approximate reasoning. In: J.E. Hayes, D. Michie, L.I. Mikulich (eds.) Proceedings of the Ninth Machine Intelligence Workshop, no. 9 in Machine Intelligence, pp. 149–194. John Wiley & Sons, Ltd., New York, NY, USA (1979)Google Scholar
  67. Zadeh, L.A.: The role of fuzzy logic in the management of uncertainty in expert systems. Fuzzy Sets and Systems 11(1–3), 197–198 (1983). DOI 10.1016/S0165-0114(83)80081-5MathSciNetCrossRefGoogle Scholar
  68. Zadeh, L.A.: Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference 105(1), 233–264 (2002). DOI 10.1016/S0378-3758(01)00212-9zbMATHMathSciNetCrossRefGoogle Scholar
  69. Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Computational Statistics & Data Analysis 51(1), 15–46 (2006). DOI 10.1016/j.csda.2006.04.029zbMATHMathSciNetCrossRefGoogle Scholar
  70. Zadeh, L.: Toward human level machine intelligence - is it achievable? the need for a paradigm shift. IEEE Computational Intelligence Magazine 3(3), 11–22 (2008). DOI 10.1109/MCI.2008.926583CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Radim Belohlavek
    • 1
    Email author
  • Rudolf Kruse
    • 2
  • Christian Moewes
    • 2
  1. 1.Palacky UniversityOlomoucCzech Republic
  2. 2.Otto-von-Guericke UniversityMagdeburgGermany

Personalised recommendations