Advertisement

Computer Modeling of Transport Layer Effects

  • André RichterEmail author
Chapter
Part of the Optical Networks book series (OPNW)

Abstract

This chapter introduces the reader into optical signal representations and the major physical layer effects causing system degradations in the WDM transport layer. Suitable modeling approaches are presented, and typical simulation results are demonstrated. Finally, the chapter focuses on performance degrading effects due to fiber propagation, optical amplification, and signal generation.

Keywords

Stimulate Raman Scattering Amplify Spontaneous Emission Group Velocity Dispersion Stimulate Brillouin Scattering Chromatic Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The author thanks Igor Koltchanov, Hadrien Louchet, Jim Farina, Cristina Arellano, and other (current and former) members of the team at VPIphotonics for sharing their invaluable knowledge and numerous contributions referenced in this work.

References

  1. 1.
    Lowery AJ, Lenzmann O, Koltchanov I, Moosburger R, Freund R, Richter A, Georgi S, Breuer D, Hamster H (2000) Multiple signal representation simulation of photonic devices, systems, and networks. IEEE J Sel Top Quant Electron 6(2):282–296CrossRefGoogle Scholar
  2. 2.
    User’s Manual (2010) VPItransmissionMaker Optical Systems, Version 8.5Google Scholar
  3. 3.
    Piprek J (ed) (2003) Optoelectronic devices: advanced simulation and analysis. Springer, New YorkGoogle Scholar
  4. 4.
    Richter A, Louchet H, Koltchanov I (2007) Pitfalls when modeling high-speed optical transmission systems. In: Proceedings of IEEE/LEOS Summer Topicals, paper TuE1.1, Portland, OR, pp 238–239Google Scholar
  5. 5.
    Gowar J (1984) Optical communication systems. Prentice Hall, Englewood Cliffs, pp 71–80Google Scholar
  6. 6.
    Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  7. 7.
    Chraplyvy A (1990) Limitations on lightwave communications imposed by optical-fiber nonlinearities. IEEE/OSA J Lightwave Technol 8(10):1548–1557CrossRefGoogle Scholar
  8. 8.
    Agrawal GP (2002) Fiber-optic communication systems, 3rd edn. Wiley Inter-science, New YorkCrossRefGoogle Scholar
  9. 9.
    Agrawal GP (1995) Nonlinear fiber optics, 3rd edn. Academic Press, New YorkGoogle Scholar
  10. 10.
    Kato T, Koyano Y, Nishimura M (2000) Temperature dependence of chromatic dispersion in various types of optical fiber. Opt Lett 25(16):1156–1158CrossRefGoogle Scholar
  11. 11.
    Liu F et al. (2002) 1.6Tbit/s (40x42.7 Gbit/s) transmission over 3600 km ultra wave fiber with all-Raman amplified 100 km terrestrial spans using ETDM transmitter and receiver. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), post-deadline paper FC7, Anaheim, CAGoogle Scholar
  12. 12.
    Inoue K (1992) Four-wave mixing in an optical fiber in the zero-dispersion wavelength region. IEEE/OSA J Lightwave Technol 10(11):1553–1561CrossRefGoogle Scholar
  13. 13.
    Oppenheim AV, Schafer RW (1989) Discrete-time signal processing. Prentice Hall, Englewood Cliffs, pp 587–622Google Scholar
  14. 14.
    Mecozzi A, Clausen CB, Shtaif M (2000) Analysis of intrachannel nonlinear effects in highly dispersed optical pulse transmission. IEEE Photonics Technol Lett 12(4):392–394CrossRefGoogle Scholar
  15. 15.
    Essiambre RJ, Mikkelsen B, Raybon G (1999) Intra-channel cross-phase modulation and four-wave mixing in high-speed TDM systems. Electron Lett 35(18):1576–1578CrossRefGoogle Scholar
  16. 16.
    Mamyshev PV, Mamysheva NA (1999) Pulse-overlapped dispersion-managed data transmission and intrachannel four-wave mixing. Opt Lett 24(21):1454–1456CrossRefGoogle Scholar
  17. 17.
    Clausen CB, Mecozzi A, Shtaif M (2000) Nonlinear intra-channel effects: system impairments and their remedy. In: Proceedings of European conference on optical communications (ECOC), vol 3, Munich, Germany, pp 33–34Google Scholar
  18. 18.
    Martensson J, Westlund M, Berntson A (2000) Intra-channel pulse interactions in 40 Gbit/s dispersion-managed RZ transmission. Electron Lett 36(3):244–246CrossRefGoogle Scholar
  19. 19.
    Killey RI, Thiele HJ, Mikhailov V, Bayvel P (2000) Reduction of intrachannel nonlinear distortion in 40 Gb/s-based WDM transmission over standard fiber. IEEE Photonics Technol Lett 12(12):1624–1626CrossRefGoogle Scholar
  20. 20.
    Richter A (2002) Timing jitter in long-haul WDM return-to-zero systems. Dissertation, Technische Universität Berlin, GermanyGoogle Scholar
  21. 21.
    Breuer D, Schneider M, Vorbeck S, Freund R, Richter A (2004) Design analysis of upgrade strategies from single to double and triple-wavelength-band WDM transmission. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 601–613Google Scholar
  22. 22.
    Kidorf H, Rottwitt K, Nissov M, Ma M, Rabarijaona E (1999) Pump interactions in a 100-nm bandwidth Raman amplifier. IEEE Photonics Technol Lett 11(5):530–532CrossRefGoogle Scholar
  23. 23.
    Namiki S, Emori Y (2001) Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes. IEEE J Sel Top Quant Electron 7(1):3–16CrossRefGoogle Scholar
  24. 24.
    Kaminow IP, Li T (eds) (2002) Optical fiber telecommunications IVB: systems and impairments. Academic Press, San Diego, CAGoogle Scholar
  25. 25.
    Iannone E, Matera F, Mecozzi A, Settembre M (1998) Nonlinear optical communication networks. Wiley, New YorkGoogle Scholar
  26. 26.
    Gordon JP, Kogelnik H (2000) PMD fundamentals: polarization mode dispersion in optical fibers. PNAS 97(9):4541–4550CrossRefGoogle Scholar
  27. 27.
    Wai PKA, Menyuk CR (1996) Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence. IEEE/OSA J Lightwave Technol 14(2):148–157CrossRefGoogle Scholar
  28. 28.
    Curti F, Daino B, de Marchis G, Matera F (1990) Statistical treatment of the evolution of the principal states of polarization in single-mode fibers. IEEE/OSA J Lightwave Technol 8(8):1162–1166CrossRefGoogle Scholar
  29. 29.
    Collett E (1993) Polarized light: fundamentals and applications. Marcel Dekker, New YorkGoogle Scholar
  30. 30.
    Foschini GJ, Pole CD (1991) Statistical theory of polarization dispersion in single-mode fibers. IEEE/OSA J Lightwave Technol 9(11):1439–1456CrossRefGoogle Scholar
  31. 31.
    Freund R, Molle L, Hanik N, Richter A (2004) Design issues of 40-Gbit/s WDM systems for metro and core network application. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 532–543Google Scholar
  32. 32.
    Derrickson D (1998) Fiber optic test and measurement. Prentice Hall, Upper Saddle RiverGoogle Scholar
  33. 33.
    Mecozzi A, Shtaif A (2002) The statistics of polarization-dependent loss in optical communication systems. IEEE Photonics Technol Lett 14(3):313–315CrossRefGoogle Scholar
  34. 34.
    Gisin N, Huttner B (1997) Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers. Opt Commun 142(1–3):119–125CrossRefGoogle Scholar
  35. 35.
    Steinkamp A, Vorbeck S, Voges E (2004) Polarization mode dispersion and polarization dependent loss in optical fiber systems. In: Proceedings of SPIE Optics East, vol 5596, Philadelphia, PA, pp 243–254Google Scholar
  36. 36.
    Antoniades N, Reichmann KC, Iannone PP, Frigo NJ, Levine AM, Roudas I (2006) The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems. IEEE Photonics Technol Lett 18(20):2099–2101CrossRefGoogle Scholar
  37. 37.
    Lee M, Antoniades N, Boskovic A (2002) PDL-induced channel power divergence in a metro WDM network. IEEE Photonics Technol Lett 14(4):561–563CrossRefGoogle Scholar
  38. 38.
    Wang D, Menyuk CR (1999) Polarization evolution due to the Kerr nonlinearity and chromatic dispersion. IEEE/OSA J Lightwave Technol 17(12):2520–2529CrossRefGoogle Scholar
  39. 39.
    Hodzic A, Konrad B, Petermann K (2003) Improvement of system performance in Nx40-Gb/s WDM transmission using alternate polarizations. IEEE Photonics Technol Lett 15(1):153–155CrossRefGoogle Scholar
  40. 40.
    Forzati M, Berntson A, Martensson J (2004) IFWM suppression using APRZ with optimized phase-modulation parameters. IEEE Photonics Technol Lett 16(10):2368–2370CrossRefGoogle Scholar
  41. 41.
    Richter A, Koltchanov I, Lowery A (2004) Photonic design automation of optical communication systems. In: Proceedings of IEEE Asia-Pacific optical communications conference (APOC), vol 5625, Beijing, China, pp 316–327Google Scholar
  42. 42.
    Bosco G, Carena A, Curri V, Gaudino R, Poggiolini P, Benedetto S (2000) Suppression of spurious tones induced by the split-step method in fiber systems simulation. IEEE Photonics Technol Lett 12(5):489–491CrossRefGoogle Scholar
  43. 43.
    Rasmussen CJ (2001) Simple and fast method for step size determination in computations of signal propagation through nonlinear fibers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), paper WDD29-1, Anaheim, CAGoogle Scholar
  44. 44.
    Taha TR, Ablowitz MJ (1984) Analytical and numerical aspects of certain nonlinear evolution equations. II. numerical, nonlinear Schroedinger equation. J Comput Phys 55(2):203–230CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Carena A, Curri V, Gaudino R, Poggiolini P, Benedetto S (1997) A time-domain optical transmission system simulation package accounting for nonlinear and polarization-related effects in fibers. IEEE J Sel Areas Commun 15(4):751–765CrossRefGoogle Scholar
  46. 46.
    Brigham EO (1974) The fast fourier-transform. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  47. 47.
    Singleton RC (1967) A method for computing the fast Fourier transform with auxiliary memory and limited high-speed storage. IEEE Trans Audio Electroacoustics 15(2):91–98CrossRefGoogle Scholar
  48. 48.
    Yu T, Reimer WM, Grigoryan VS, Menyuk CR (2000) A mean field approach for simulating wavelength-division multiplexed systems. IEEE Photonics Technol Lett 12(4):443–445CrossRefGoogle Scholar
  49. 49.
    Wai PKA, Menyuk CR, Chen HH (1991) Stability of solitons in randomly varying birefringent fibers. Opt Lett 16(16):1231–1233CrossRefGoogle Scholar
  50. 50.
    Marcuse D, Menyuk CR, Wai PKA (1997) Application of the Manakov-PMD equation to studies of signal propagation in optical fibers with randomly varying birefringence. IEEE/OSA J Lightwave Technol 15(9):1735–1746CrossRefGoogle Scholar
  51. 51.
    Biondini G, Kath WL, Menyuk CR (2002) Importance sampling for polarization-mode dispersion. IEEE Photonics Technol Lett 14(3):310–312CrossRefGoogle Scholar
  52. 52.
    Menyuk CR (1987) Nonlinear pulse propagation in birefringence optical fibers. IEEE J Quant Electron 23(2):174–176CrossRefMathSciNetGoogle Scholar
  53. 53.
    Nelson LE, Jopson R (2002) Introduction to polarization mode dispersion in lightwave systems Venice Summer School on PMD, Venice, Italy, pp 24–26Google Scholar
  54. 54.
    Shtaif M, Mecozzi A (2000) Study of the frequency autocorrelation of the differential group delay in fibers with polarization mode dispersion. Opt Lett 25(10):707–709CrossRefGoogle Scholar
  55. 55.
    Richter A, Dazert M, Koltchanov I, Myslivets E, Lowery A (2002) Performance degradations in high-speed (40 Gbit/s +) transmission systems due to polarization mode dispersion. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper 073, Anaheim, CAGoogle Scholar
  56. 56.
    Richter A, Koltchanov I, Kuzmin K, Myslivets E, Freund R (2005) Issues on bit-error rate estimation for fiber-optic communication systems. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper NTuH3, Anaheim, CAGoogle Scholar
  57. 57.
    Richter A, Koltchanov I, Kuzmin K, Rukhlenko D (2005) Bit-error rate estimation for applications using 40 Gbit/s and higher. In: Proceedings of IEEE workshop on optical transmission and equalization (WOTE), paper B3, Shanghai, China, pp 23–24Google Scholar
  58. 58.
    Francia C, Bruyere F, Penninckx D, Chbat M (1998) PMD second-order effects on pulse propagation in single-mode optical fibers. IEEE Photonics Technol Lett 10(12):1739–1741CrossRefGoogle Scholar
  59. 59.
    Kogelnik H, Nelson LE, Gordon JP, Jopson RM (2000) Jones matrix for second-order polarization mode dispersion. Opt Lett 25(1):19–21CrossRefGoogle Scholar
  60. 60.
    Eyal A, Marshall WK, Tur M, Yariv A (1999) Representation of second-order polarization mode dispersion. IEEE Electron Lett 35(19):1658–1659CrossRefGoogle Scholar
  61. 61.
    Orlandini A, Vincetti L (2001) A simple and useful model for Jones matrix to evaluate higher order polarization-mode dispersion effects. IEEE Photonics Technol Lett 13(11):1176–1178CrossRefGoogle Scholar
  62. 62.
    Poloyko I, Khilo A, Myslivets E, Volkov V, Koltchanov I, Richter A, Lowery A (2003) Photonic design automation of Raman amplified systems. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper P29, Atlanta, GAGoogle Scholar
  63. 63.
    Photonic Modules Reference Manual (2011) VPItransmissionMaker ™Optical Systems, Version 8.6Google Scholar
  64. 64.
    Rottwitt K, Bromage J, Leng L (2002) Scaling the Raman gain coefficient of optical fibers. In: Proceedings of European conference on optical communications (ECOC), paper S3.03, Copenhagen, DenmarkGoogle Scholar
  65. 65.
    Grant AR (2002) Calculating the Raman pump distribution to achieve minimum gain ripple. IEEE J Quant Electron 38(11):1503–1509CrossRefMathSciNetGoogle Scholar
  66. 66.
    Perlin VE, Wintful HG (2002) On distributed Raman amplification for ultrabroad-band long-haul WDM systems. IEEE/OSA J Lightwave Technol 20(3):409–416CrossRefGoogle Scholar
  67. 67.
    Richter A, Koltchanov I, Myslivets E, Khilo A, Shkred G, Freund R (2005) Optimization of multi-pump Raman amplifiers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper NTuB4, Anaheim, CAGoogle Scholar
  68. 68.
    Lin Q, Agrawal G (2003) PMD effects in fiber-based Raman amplifiers. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC), paper TuC4, Atlanta, GAGoogle Scholar
  69. 69.
    Richter A, Louchet H, Poloyko I, Karelin N, Farina J, Koltchanov I (2009) A parametric approach to optical systems design, optimization and validation. In: Proceedings of European conference on networks and optical communications (NOC), Valladolid, Spain, pp 361–367Google Scholar
  70. 70.
    Mears RJ, Reekie L, Jauncey IM, Payne DN (1987) Low noise erbium doped fiber amplifier operating at 1.54 μm. IEEE Electron Lett 23(19):1026–1028CrossRefGoogle Scholar
  71. 71.
    Desurvire E (1994) Erbium-doped fiber amplifiers, principles and applications. Wiley, New YorkGoogle Scholar
  72. 72.
    Becker PC, Olsson NA, Simpson JR (1999) Erbium-doped fiber amplifiers, fundamentals and technology. Academic Press, New YorkGoogle Scholar
  73. 73.
    Giles R, Desurvire E (1991) Modeling erbium-doped fiber amplifiers. IEEE/OSA J Lightwave Technol 9(2):271–283CrossRefGoogle Scholar
  74. 74.
    User’s Manual (2011) VPIcomponentMaker ™Optical Amplifiers, Version 8.6Google Scholar
  75. 75.
    Abramovich F, Bayvel P (1997) Some statistical remarks on the derivation of BER in amplified optical communication systems. IEEE Trans Commun 45(9):1032–1034CrossRefGoogle Scholar
  76. 76.
    Keiser G (2000) Optical fiber communications, 3rd edn. McGraw-Hill, BostonGoogle Scholar
  77. 77.
    Collin RE (1992) Foundations for microwave engineering, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  78. 78.
    Bonnedal D (1996) EDFA gain described with a black box model. In: Proceedings of OSA trends in optics and photonics, optical amplifiers and their applications, vol 5, Washington, D.C., pp 53–56Google Scholar
  79. 79.
    Burgmeier J, Cords A, März R, Schäffer C, Stummer B (1998) A black box model of EDFA’s operating in WDM systems. IEEE/OSA J Lightwave Technol 16(7):1271–1275CrossRefGoogle Scholar
  80. 80.
    Zhang X, Mitchell A (2000) A simple black box model for erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 12(1):28–30CrossRefGoogle Scholar
  81. 81.
    Jacobsen G, Persson U, Gillner L, Vanin E, Wingstrand S (2000) Pump power dependent black box EDFA model. J Opt Commun 21(5):171–177Google Scholar
  82. 82.
    Villa JAL, Bo FB, Querol VP, Teixeira AL, Prat Goma J (2008) Extended black box model for fiber length variation of erbium-doped fiber amplifiers. IEEE Photonics Technol Lett 20(24):2063–2065CrossRefGoogle Scholar
  83. 83.
    Richter A, Devatine R, Koltchanov I, Lowery A, Khomchenko D, Yevseyenko D, Moar P (2002) Virtual product prototyping of erbium doped fiber amplifiers for applications in dense WDM systems. In: Proceedings of IEEE/OSA national fiber optics engineers conference (NFOEC), paper 153, Anaheim, CAGoogle Scholar
  84. 84.
    Yoo SJB, Xin W, Garratt LD, Young JC, Ellinas G, Chiao JC, Rauch M, Baran JE, Meagher B, Leblanc H, Chang G-K (1998) Observation of prolonged power transients in a reconfigurable multiwavelength network and their suppression by gain-clamping of optical amplifiers. IEEE Photonics Technol Lett 10(11):1659–1661CrossRefGoogle Scholar
  85. 85.
    Richter A, Karelin N, Louchet H, Koltchanov I, Farina J (2010) Dynamic events in optical networks—emulation and performance impact analysis. In: Proceedings of IEEE military communication conference (MILCOM), San Jose, CA, pp 1083–1087Google Scholar
  86. 86.
    Matsui Y, Mahgerefteh D, Zheng X, Liao C, Fan ZF, McCallion K, Tayebati P (2006) Chirp-managed directly modulated laser (CML). IEEE Photonics Technol Lett 18(2):385–387CrossRefGoogle Scholar
  87. 87.
    Cartledge JC, Srinivasan RC (1997) Extraction of DFB laser rate equation parameters for system simulation purposes. IEEE/OSA J Lightwave Technol 15(5):852–860CrossRefGoogle Scholar
  88. 88.
    Lowery AJ (1992) A two-port bilateral model for semiconductor lasers. IEEE J Quant Electron 28(1):82–92CrossRefGoogle Scholar
  89. 89.
    Arellano C, Mingaleev S, Novitsky A, Koltchanov I, Richter A (2009) Design of complex semiconductor integrated structures. In: Proceedings of IEEE Asia communication and photon conference (ACP) 7631, paper 7631-106, Shanghai, ChinaGoogle Scholar
  90. 90.
    Gnauck AH, Korotky SK, Veselka J, Nagal J, Kemmener CT, Mindford WJ, Moser DT (1991) Dispersion penalty reduction using an optical modulator with adjustable chirp. IEEE Photonics Technol Lett 3(10):916–918CrossRefGoogle Scholar
  91. 91.
    Hashimoto JI, Nakano Y, Tada K (1992) Influence of facet reflection on the performance of a DFB laser integrated with an optical amplifier/modulator. IEEE J Quant Electron 28(3):594–603CrossRefGoogle Scholar
  92. 92.
    Koyama F, Iga K (1998) Frequency chirping in external modulators. IEEE/OSA J Lightwave Technol 6(1):87–93CrossRefGoogle Scholar
  93. 93.
    Koltchanov I, Richter A, Myslivets E, Kazmierski C (2005) Complete time and frequency-dependent modeling of electro-absorption modulators. In: Proceedings of IEEE/OSA optical fiber communication conference (OFC/NFOEC), paper OME42, Anaheim, CAGoogle Scholar
  94. 94.
    Mendoza-Alvarez JG, Coldren LA, Alping A, Yan RH, Hausken T, Lee K, Pedrottin K (1988) Analysis of depletion edge translation lightwave modulators. IEEE/OSA J Lightwave Technol 6(6):793–808CrossRefGoogle Scholar
  95. 95.
    Ahmed M, Yamada M, Saito M (2001) Numerical modeling of intensity and phase noise in semiconductor lasers. IEEE J Quant Electron 37(12):1600–1610CrossRefGoogle Scholar
  96. 96.
    Betti S, De Marchis G, Iannone E (1995) Coherent optical communication systems. Wiley Inter-science, New YorkGoogle Scholar
  97. 97.
    Freund R, Molle L, Hanik N, Richter A (2004) Design issues of 40 Gbit/s WDM-systems for metro and core network application. In: Proceedings of European conference on optical communications (ECOC), paper Tu351, Stockholm, SwedenGoogle Scholar
  98. 98.
    Kaminow IP, Koch TL (eds) (1997) Optical fiber telecommunications IIIB. Academic Press, San Diego, CAGoogle Scholar
  99. 99.
    Dutta AK, Dutta NK, Fujiwara M (eds) (2002) WDM technologies: active optical components. Academic Press, New YorkGoogle Scholar
  100. 100.
    Arellano C, Louchet H, Koltchanov I, Richter A (2009) Important device limitations of transmitter and receiver concepts when designing 100 G transmission systems. In: Proceedings of IEEE international conference on transparent optical networks (ICTON), paper Tu.C2.3, Azores, PortugalGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.VPIphotonics DivisionVPIsystemsBerlinGermany

Personalised recommendations