Matrix Stiffness: A Regulator of Cellular Behavior and Tissue Formation

  • Brooke N. Mason
  • Joseph P. Califano
  • Cynthia A. Reinhart-King


The extracellular environment is an essential mediator of cell health and provides both chemical and mechanical stimuli to influence single and collective cell behaviors. While historically there has been significant emphasis placed on chemical regulators within the extracellular matrix, the role of the mechanical environment is less well known. Here, we review the role of matrix mechanics on cell function and tissue integrity. Cellular responses to mechanical signals include differentiation, migration, proliferation, and alterations in cell–cell and cell–matrix adhesion. Interestingly, the mechanical properties of tissues are altered in many disease states, leading to cellular dysfunction and further disease progression. Successful regenerative medicine strategies must consider the native mechanical environment so that they are able to elicit a favorable cellular response and integrate into the native tissue structure.


  1. 1.
    Alp, N.J., West, N.E., et al.: Increased intimal hyperplasia in experimental vein graft stenting compared to arterial stenting: comparisons in a new rabbit model of stent injury. Cardiovasc. Res. 56(1), 164–172 (2002)Google Scholar
  2. 2.
    Anderson, H.C.: An antagonist of osteoclast integrins prevents experimental osteoporosis. J. Clin. Invest. 99(9), 2059 (1997)Google Scholar
  3. 3.
    Assoian, R.K., Klein, E.A.: Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 18(7), 347–352 (2008)Google Scholar
  4. 4.
    Balaban, N.Q., Schwarz, U.S., et al.: Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3(5), 466–472 (2001)Google Scholar
  5. 5.
    Baneyx, G., Baugh, L., et al.: Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl Acad. Sci. USA A99(8), 5139–5143 (2002)Google Scholar
  6. 6.
    Barbee, K.A., Davies, P.F., et al.: Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ. Res. 74(1), 163–171 (1994)Google Scholar
  7. 7.
    Beningo, K.A., Dembo, M., et al.: Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 153(4), 881–888 (2001)Google Scholar
  8. 8.
    Berbari, N.F., O’Connor, A.K., et al.: The primary cilium as a complex signaling center. Curr. Biol. 19(13), R526–R535 (2009)Google Scholar
  9. 9.
    Borovski, T., De Sousa, E.M.F., et al.: Cancer stem cell niche: the place to be. Cancer Res. 71(3), 634–639 (2011)Google Scholar
  10. 10.
    Bougherara, H., Zdero, R., et al.: A preliminary biomechanical study of a novel carbon-fibre hip implant versus standard metallic hip implants. Med. Eng. Phys. 33, 121–128 (2010)Google Scholar
  11. 11.
    Brown, X.Q., Bartolak-Suki, E., et al.: Effect of substrate stiffness and PDGF on the behavior of vascular smooth muscle cells: Implications for atherosclerosis. J. Cell. Physiol. 225(1), 115–122 (2010)Google Scholar
  12. 12.
    Bruel, A., Oxlund, H.: Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127(2), 155–165 (1996)Google Scholar
  13. 13.
    Burridge, K., Chrzanowska-Wodnicka, M.: Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12, 463–518 (1996)Google Scholar
  14. 14.
    Buxboim, A., Discher, D.E.: Stem cells feel the difference. Nat. Methods 7(9), 695–697 (2010)Google Scholar
  15. 15.
    Byfield, F.J., Reen, R.K., et al.: Endothelial actin and cell stiffness is modulated by substrate stiffness in 2D and 3D. J. Biomech. 42(8), 1114–1119 (2009)Google Scholar
  16. 16.
    Califano, J.P., Reinhart-King, C.A.: A Balance of Substrate Mechanics and Matrix Chemistry Regulates Endothelial Cell Network Assembly. Cell. Mol. Bioeng.. 1(2–3), 122–132 (2008)Google Scholar
  17. 17.
    Califano, J.P., Reinhart-King, C.A.: Substrate stiffness and cell area drive cellular traction stresses in single cells and cells in contact. Cell. Mol. Bioeng. 3(1), 68–75 (2010)Google Scholar
  18. 18.
    Camand, E., Morel, M.P., et al.: Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur. J. Neurosci. 20(5), 1161–1176 (2004)Google Scholar
  19. 19.
    Carmeliet, G., Vico, L., et al.: Space flight: a challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr. 11(1–3), 131–144 (2001)Google Scholar
  20. 20.
    Chan, V., Zorlutuna, P., et al.: Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 10(16), 2062–2070 (2010)Google Scholar
  21. 21.
    Chowdhury, F., Na, S., et al.: Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat. Mater. 9(1), 82–88 (2010)Google Scholar
  22. 22.
    Davies, P.F., Barbee, K.A., et al.: Hemodynamics and atherogenesis. Endothelial surface dynamics in flow signal transduction. Ann. N. Y. Acad. Sci. 748, 86–102 (1995). discussion 102–3Google Scholar
  23. 23.
    DeGroot, J.: The AGE of the matrix: chemistry, consequence and cure. Curr. Opin. Pharmacol. 4(3), 301–305 (2004)Google Scholar
  24. 24.
    DeLoach, S.S., Townsend, R.R.: Vascular stiffness: its measurement and significance for epidemiologic and outcome studies. Clin. J. Am. Soc. Nephrol. 3(1), 184–192 (2008)Google Scholar
  25. 25.
    Dembo, M., Oliver, T., et al.: Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophysics J70(4), 2008–2022 (1996)Google Scholar
  26. 26.
    Deroanne, C.F., Lapiere, C.M., et al.: In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovasc. Res. 49(3), 647–658 (2001)Google Scholar
  27. 27.
    Dickinson, L.E., Kusuma, S., et al.: Reconstructing the differentiation niche of embryonic stem cells using biomaterials. Macromol. Biosci. 11(1), 36–49 (2011)Google Scholar
  28. 28.
    Discher, D.E., Janmey, P., et al.: Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)Google Scholar
  29. 29.
    Discher, D.E., Mooney, D.J., et al.: Growth factors, matrices, and forces combine and control stem cells. Science 324(5935), 1673–1677 (2009)Google Scholar
  30. 30.
    Engh, C.A., Bobyn, J.D., et al.: Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J. Bone Joint Surg. Br. 69(1), 45–55 (1987)Google Scholar
  31. 31.
    Engler, A., Bacakova, L., et al.: Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86(1 Pt 1), 617–628 (2004)Google Scholar
  32. 32.
    Engler, A.J., Griffin, M.A., et al.: Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6), 877–887 (2004)Google Scholar
  33. 33.
    Engler, A.J., Sen, S., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)Google Scholar
  34. 34.
    Evans, N.D., Minelli, C., et al.: Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cell. Mater. 18, 1–13 (2009). discussion 13–4Google Scholar
  35. 35.
    Galbraith, C.G., Sheetz, M.P.: A micromachined device provides a new bend on fibroblast traction forces. Proc. Natl Acad. Sci. USA A94(17), 9114–9118 (1997)Google Scholar
  36. 36.
    Galbraith, C.G., Yamada, K.M., et al.: The relationship between force and focal complex development. J. Cell Biol. 159(4), 695–705 (2002)Google Scholar
  37. 37.
    Geiger, B., Spatz, J.P., et al.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10(1), 21–33 (2009)Google Scholar
  38. 38.
    Genes, N.G., Rowley, J.A., et al.: Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys. 422(2), 161–167 (2004)Google Scholar
  39. 39.
    Georges, P.C., Janmey, P.A.: Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98(4), 1547–1553 (2005)Google Scholar
  40. 40.
    Georges, P.C., Miller, W.J., et al.: Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophysics J90(8), 3012–3018 (2006)Google Scholar
  41. 41.
    Ghibaudo, M., Saez, A., et al.: Traction forces and rigidity sensing regulate cell functions. Soft Matter 4, 1836–1843 (2008)Google Scholar
  42. 42.
    Gray, D.S., Liu, W.F., et al.: Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton. Exp. Cell Res. 314(15), 2846–2854 (2008)Google Scholar
  43. 43.
    Guo, W.H., Frey, M.T., et al.: Substrate rigidity regulates the formation and maintenance of tissues. Biophys. J. 90(6), 2213–2220 (2006)Google Scholar
  44. 44.
    Harris, A.K., Wild, P., et al.: Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440), 177–179 (1980)Google Scholar
  45. 45.
    Hayashi, T., Carthew, R.W.: Surface mechanics mediate pattern formation in the developing retina. Nature 431(7009), 647–652 (2004)Google Scholar
  46. 46.
    His, W. (1874). Unsere Korperform und das physiologische Problem ihrer Enstehung; Briefe an einen Befreundeten Naturforscher. Leipzig, F.C.W. Vogel.Google Scholar
  47. 47.
    Horner, P.J., Gage, F.H.: Regenerating the damaged central nervous system. Nature 407(6807), 963–970 (2000)Google Scholar
  48. 48.
    Hove, J.R., Koster, R.W., et al.: Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421(6919), 172–177 (2003)Google Scholar
  49. 49.
    Hynes, R.O.: Cell surface proteins and malignant transformation. Biochim. Biophys. Acta 458(1), 73–107 (1976)Google Scholar
  50. 50.
    Hynes, R.O.: Integrins: bidirectional, allosteric signaling machines. Cell 110(6), 673–687 (2002)Google Scholar
  51. 51.
    Ingber, D.E.: Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. Differentiation 70(9–10), 547–560 (2002)Google Scholar
  52. 52.
    Ingber, D.E., Madri, J.A., et al.: Role of basal lamina in neoplastic disorganization of tissue architecture. Proc. Natl Acad. Sci. USA A78(6), 3901–3905 (1981)Google Scholar
  53. 53.
    Isenberg, B.C., Dimilla, P.A., et al.: Vascular smooth muscle cell durotaxis depends on substrate stiffness gradient strength. Biophysics J97(5), 1313–1322 (2009)Google Scholar
  54. 54.
    Jaalouk, D.E., Lammerding, J.: Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10(1), 63–73 (2009)Google Scholar
  55. 55.
    Jannat, R.A., Dembo, M., et al.: Neutrophil adhesion and chemotaxis depend on substrate mechanics. J. Phys. Condens. Matter 22(19), 194117 (2010)Google Scholar
  56. 56.
    Johnston, R.S.; Dietlein, L.F.: The Proceedings of the Skylab Life Sciences Symposium, vol. 1 (1974).Google Scholar
  57. 57.
    Kaufman, D.A., Albelda, S.M., et al.: Role of lateral cell-cell border location and extracellular/transmembrane domains in PECAM/CD31 mechanosensation. Biochem. Biophys. Res. Commun. 320(4), 1076–1081 (2004)Google Scholar
  58. 58.
    King, G.L., Brownlee, M.: The cellular and molecular mechanisms of diabetic complications. Endocrinol. Metab. Clin. North Am. 25(2), 255–270 (1996)Google Scholar
  59. 59.
    Kloxin, A.M., Kasko, A.M., et al.: Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923), 59–63 (2009)Google Scholar
  60. 60.
    Kubow, K.E., Klotzsch, E., et al.: Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells. Integr. Biol. (Camb) 1(11–12), 635–648 (2009)Google Scholar
  61. 61.
    Kumar, S., Maxwell, I.Z., et al.: Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysics J90(10), 3762–3773 (2006)Google Scholar
  62. 62.
    Kumar, S., Weaver, V.M.: Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28(1–2), 113–127 (2009)Google Scholar
  63. 63.
    Langer, R., Vacanti, J.P.: Tissue engineering. Science 260(5110), 920–926 (1993)Google Scholar
  64. 64.
    Lee, D.A., Knight, M.M., et al.: Stem cell mechanobiology. J. Cell. Biochem. 112(1), 1–9 (2010)Google Scholar
  65. 65.
    Lee, J., Leonard, M., et al.: Traction forces generated by locomoting keratocytes. J. Cell Biol. 127(6 Pt 2), 1957–1964 (1994)Google Scholar
  66. 66.
    Legate, K.R., Fassler, R.: Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails. J. Cell Sci. 122(Pt 2), 187–198 (2009)Google Scholar
  67. 67.
    Levental, K.R., Yu, H., et al.: Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5), 891–906 (2009)Google Scholar
  68. 68.
    Lo, C.M., Wang, H.B., et al.: Cell movement is guided by the rigidity of the substrate. Biophysics J79(1), 144–152 (2000)Google Scholar
  69. 69.
    Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23(1), 47–55 (2005)Google Scholar
  70. 70.
    Makino, A., Prossnitz, E.R., et al.: G protein-coupled receptors serve as mechanosensors for fluid shear stress in neutrophils. Am. J. Physiol. Cell Physiol. 290(6), C1633–C1639 (2006)Google Scholar
  71. 71.
    Mammoto, T., Ingber, D.E.: Mechanical control of tissue and organ development. Development 137(9), 1407–1420 (2010)Google Scholar
  72. 72.
    Marganski, W.A., Dembo, M., et al.: Measurements of cell-generated deformations on flexible substrata using correlation-based optical flow. Methods Enzymol. 361, 197–211 (2003)Google Scholar
  73. 73.
    Martin, A.C., Wieschaus, E.F.: Tensions divide. Nat. Cell Biol. 12(1), 5–7 (2010)Google Scholar
  74. 74.
    Martinac, B.: Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci. 117(Pt 12), 2449–2460 (2004)Google Scholar
  75. 75.
    Maynard Jr., F.M., Bracken, M.B., et al.: International standards for neurological and functional classification of spinal cord injury. American Spinal Injury Association. Spinal Cord 35(5), 266–274 (1997)Google Scholar
  76. 76.
    Mege, R.M., Gavard, J., et al.: Regulation of cell-cell junctions by the cytoskeleton. Curr. Opin. Cell Biol. 18(5), 541–548 (2006)Google Scholar
  77. 77.
    Metallo, C.M., Vodyanik, M.A., et al.: The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol. Bioeng. 100(4), 830–837 (2008)Google Scholar
  78. 78.
    Mitchell, R.N.: Graft vascular disease: immune response meets the vessel wall. Annu. Rev. Pathol. 4, 19–47 (2009)Google Scholar
  79. 79.
    Monnier, V.M., Kohn, R.R., et al.: Accelerated age-related browning of human collagen in diabetes mellitus. Proc. Natl Acad. Sci. USA A81(2), 583–587 (1984)Google Scholar
  80. 80.
    Morrison, S.J., Shah, N.M., et al.: Regulatory mechanisms in stem cell biology. Cell 88(3), 287–298 (1997)Google Scholar
  81. 81.
    Nagels, J., Stokdijk, M., et al.: Stress shielding and bone resorption in shoulder arthroplasty. J. Shoulder Elbow Surg. 12(1), 35–39 (2003)Google Scholar
  82. 82.
    Neath, P., Roche, S.M., et al.: Intraocular pressure-dependent and -independent phases of growth of the embryonic chick eye and cornea. Invest. Ophthalmol. Vis. Sci. 32(9), 2483–2491 (1991)Google Scholar
  83. 83.
    Nelson, C.M., Bissell, M.J.: Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006)Google Scholar
  84. 84.
    Newby, A.C., Zaltsman, A.B.: Molecular mechanisms in intimal hyperplasia. J. Pathol. 190(3), 300–309 (2000)Google Scholar
  85. 85.
    Ng, M.R., Brugge, J.S.: A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16(6), 455–457 (2009)Google Scholar
  86. 86.
    Osawa, M., Masuda, M., et al.: Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule? J. Cell Biol. 158(4), 773–785 (2002)Google Scholar
  87. 87.
    Pajerowski, J.D., Dahl, K.N., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl Acad. Sci. USA A104(40), 15619–15624 (2007)Google Scholar
  88. 88.
    Paszek, M.J., Zahir, N., et al.: Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3), 241–254 (2005)Google Scholar
  89. 89.
    Patwari, P., Lee, R.T.: Mechanical control of tissue morphogenesis. Circ. Res. 103(3), 234–243 (2008)Google Scholar
  90. 90.
    Pelham Jr., R.J., Wang, Y.: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA A94(25), 13661–13665 (1997)Google Scholar
  91. 91.
    Peyton, S.R., Putnam, A.J.: Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204(1), 198–209 (2005)Google Scholar
  92. 92.
    Phillips, H.M., Davis, G.S.: Liquid-Tissue Mechanics in Amphibian Gastrulation – Germ-Layer Assembly in Rana-Pipiens. Am. Zool. 18(1), 81–93 (1978)Google Scholar
  93. 93.
    Plow, E.F., Haas, T.A., et al.: Ligand binding to integrins. J. Biol. Chem. 275(29), 21785–21788 (2000)Google Scholar
  94. 94.
    Rabodzey, A., Alcaide, P., et al.: Mechanical forces induced by the transendothelial migration of human neutrophils. Biophysics J95(3), 1428–1438 (2008)Google Scholar
  95. 95.
    Raivich, G., Bohatschek, M., et al.: Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res. Brain Res. Rev. 30(1), 77–105 (1999)Google Scholar
  96. 96.
    Reinhart-King, C.A., Dembo, M., et al.: Endothelial cell traction forces on RGD-derivatized polyacrylamide substrata. Langmuir 19(5), 1573–1579 (2003)Google Scholar
  97. 97.
    Reinhart-King, C.A., Dembo, M., et al.: The dynamics and mechanics of endothelial cell spreading. Biophys. J. 89(1), 676–689 (2005)Google Scholar
  98. 98.
    Reinhart-King, C.A., Dembo, M., et al.: Cell-Cell Mechanical Communication through Compliant Substrates. Biophys. J. 95(12), 6044–6051 (2008)Google Scholar
  99. 99.
    Rho, J.Y., Ashman, R.B., et al.: Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26(2), 111–119 (1993)Google Scholar
  100. 100.
    Riveline, D., Zamir, E., et al.: Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153(6), 1175–1186 (2001)Google Scholar
  101. 101.
    Rodriguez, O.C., Schaefer, A.W., et al.: Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. 5(7), 599–609 (2003)Google Scholar
  102. 102.
    Rohani, N., Canty, L., et al.: EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. 9(3), e1000597 (2011)Google Scholar
  103. 103.
    Roux, W.: Der zuchtende Kampf der Teile, oder die Teilauslese im Organismus (Theorie der 'funktionellen Anpassung). Wilhelm Engelmann, Leipzig (1881)Google Scholar
  104. 104.
    Saez, A., Ghibaudo, M., et al.: Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA A104(20), 8281–8286 (2007)Google Scholar
  105. 105.
    Salacinski, H.J., Goldner, S., et al.: The mechanical behavior of vascular grafts: a review. J. Biomater. Appl. 15(3), 241–278 (2001)Google Scholar
  106. 106.
    Samani, A., Plewes, D.: A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol. 49(18), 4395–4405 (2004)Google Scholar
  107. 107.
    Sarkar, S., Salacinski, H.J., et al.: The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur. J. Vasc. Endovasc. Surg. 31(6), 627–636 (2006)Google Scholar
  108. 108.
    Schedin, P., Keely, P.J.: Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1), a003228 (2010)Google Scholar
  109. 109.
    Sharma, R.I., Snedeker, J.G.: Biochemical and biomechanical gradients for directed bone marrow stromal cell differentiation toward tendon and bone. Biomaterials 31(30), 7695–7704 (2010)Google Scholar
  110. 110.
    Shimizu, T., Yabe, T., et al.: E-cadherin is required for gastrulation cell movements in zebrafish. Mech. Dev. 122(6), 747–763 (2005)Google Scholar
  111. 111.
    Skalak, R., Fox, C.F. (eds.): Tissue engineering. Alan R. Liss, New York (1988)Google Scholar
  112. 112.
    Sniadecki, N.J., Anguelouch, A., et al.: Magnetic microposts as an approach to apply forces to living cells. Proc. Natl Acad. Sci. USA A104(37), 14553–14558 (2007)Google Scholar
  113. 113.
    Sniadecki, N.J., Chen, C.S.: Microfabricated silicone elastomeric post arrays for measuring traction forces of adherent cells. Methods Cell Biol. 83, 313–328 (2007)Google Scholar
  114. 114.
    Steinberg, M.S.: On the Mechanism of Tissue Reconstruction by Dissociated Cells, Iii. Free Energy Relations and the Reorganization of Fused, Heteronomic Tissue Fragments. Proc. Natl Acad. Sci. USA A48(10), 1769–1776 (1962)Google Scholar
  115. 115.
    Sternlicht, M.D., Bissell, M.J., et al.: The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene 19(8), 1102–1113 (2000)Google Scholar
  116. 116.
    Tamkun, J.W., DeSimone, D.W., et al.: Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46(2), 271–282 (1986)Google Scholar
  117. 117.
    Tan, J.L., Tien, J., et al.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl Acad. Sci. USA A100(4), 1484–1489 (2003)Google Scholar
  118. 118.
    Thevenot, P., Hu, W., et al.: Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 8(4), 270–280 (2008)Google Scholar
  119. 119.
    Titushkin, I., Cho, M.: Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophysics J93(10), 3693–3702 (2007)Google Scholar
  120. 120.
    Tiwari, A., Cheng, K.S., et al.: Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur. J. Vasc. Endovasc. Surg. 25(4), 287–295 (2003)Google Scholar
  121. 121.
    Townes, P.L., Holtfreter, J.: Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128(1), 53–120 (1955)Google Scholar
  122. 122.
    Tredan, O., Galmarini, C.M., et al.: Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99(19), 1441–1454 (2007)Google Scholar
  123. 123.
    Tse, J.R., Engler, A.J.: Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS One 6(1), e15978 (2011)Google Scholar
  124. 124.
    Votteler, M., Kluger, P.J., et al.: Stem cell microenvironments–unveiling the secret of how stem cell fate is defined. Macromol. Biosci. 10(11), 1302–1315 (2010)Google Scholar
  125. 125.
    Wang, H.B., Dembo, M., et al.: Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279(5), C1345–C1350 (2000)Google Scholar
  126. 126.
    Wang, N., Butler, J.P., et al.: Mechanotransduction across the cell surface and through the cytoskeleton. Science 260(5111), 1124–1127 (1993)Google Scholar
  127. 127.
    Waters, C.M., Sporn, P.H., et al.: Cellular biomechanics in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 283(3), L503–L509 (2002)Google Scholar
  128. 128.
    Wolff, J.: Das Gesetz der Transformation der Knochen. A. Hirschwald, Berlin (1892)Google Scholar
  129. 129.
    Wong, J.Y., Velasco, A., et al.: Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19(5), 1908–1913 (2003)Google Scholar
  130. 130.
    Yeung, T., Georges, P.C., et al.: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60(1), 24–34 (2005)Google Scholar
  131. 131.
    Yu, H., Mouw, J.K., et al.: Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21(1), 47–56 (2010)Google Scholar
  132. 132.
    Zaidel-Bar, R., Itzkovitz, S., et al.: Functional atlas of the integrin adhesome. Nat. Cell Biol. 9(8), 858–867 (2007)Google Scholar
  133. 133.
    Zaman, M.H., Trapani, L.M., et al.: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc. Natl Acad. Sci. USA A103(29), 10889–10894 (2006)Google Scholar
  134. 134.
    Zemel, A.; Rehfeld, H. et al.: Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat. Phys. 6, 468–473 (2010)Google Scholar
  135. 135.
    Zemel, A., Safran, S.A.: Active self-polarization of contractile cells in asymmetrically shaped domains. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2 Pt 1), 021905 (2007)Google Scholar
  136. 136.
    Zhou, J., Kim, H.Y., et al.: Actomyosin stiffens the vertebrate embryo during crucial stages of elongation and neural tube closure. Development 136(4), 677–688 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Brooke N. Mason
    • 1
  • Joseph P. Califano
    • 1
  • Cynthia A. Reinhart-King
    • 1
  1. 1.Department of Biomedical EngineeringCornell UniversityIthacaUSA

Personalised recommendations