Selenium pp 85-93 | Cite as

Evolutionary Basis for the Use of Selenocysteine

  • Louise WhiteEmail author
  • Sergi Castellano


Evolutionary adaptations to dietary selenium may explain the use of selenocysteine in proteins. If so, adaptive signals should be present in the genomic regions of selenoprotein genes. It is, however, difficult to identify the signatures of adaptation left by natural selection in the genome of extant species (including humans). Furthermore, dietary adaptations to selenium may have happened in some species but not in others. For example, while dietary selenium does not seem to be a major selective force behind the evolution of selenocysteine use in vertebrate proteins, it may be an important factor in other lineages. Whether levels of selenium in the diet have driven the evolution of other functionally important amino acid changes in selenoproteins is not known. Dietary selenium may have also shaped the regulation of selenoprotein genes and of genes involved in the metabolism of selenium. Evolutionary genetics methods aimed at detecting signals of natural selection at the regulatory level are key to answering this question. Understanding the genetic basis of adaptations to levels of selenium in the diet would help shed light on the molecular mechanisms behind the metabolism of selenium.


Selenium Level Dietary Shift Dietary Selenium Trace Nutrient Selenoprotein Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Max Planck Society.


  1. 1.
    Kryukov GV, Castellano S, Novoselov SV et al (2003) Science 300:1439PubMedCrossRefGoogle Scholar
  2. 2.
    Kryukov GV, Gladyshev VN (2004) EMBO Rep 5:538PubMedCrossRefGoogle Scholar
  3. 3.
    Castellano S, Lobanov AV, Chapple C et al (2005) Proc Natl Acad Sci USA 102:16188PubMedCrossRefGoogle Scholar
  4. 4.
    Fomenko DE, Xing W, Adair BM et al (2007) Science 315:387PubMedCrossRefGoogle Scholar
  5. 5.
    Castellano S, Andrés AM, Bosch E et al (2009) Mol Biol Evol 26:2031PubMedCrossRefGoogle Scholar
  6. 6.
    Distante S, Robson KJH, Graham-Campbell J et al (2004) Hum Genet 115:269PubMedCrossRefGoogle Scholar
  7. 7.
    Denic S, Agarwal MM (2007) Nutrition 23:603PubMedCrossRefGoogle Scholar
  8. 8.
    Levander OA (1987) Ann Rev Nutr 7:227CrossRefGoogle Scholar
  9. 9.
    Valentine JL (1997) Biomed Environ Sci 10:292PubMedGoogle Scholar
  10. 10.
    Steinnes E (2009) Environ Geochem Health 31:523PubMedCrossRefGoogle Scholar
  11. 11.
    Luca F, Perry GH, Di Rienzo A (2010) Annu Rev Nutr 30:291PubMedCrossRefGoogle Scholar
  12. 12.
    Castellano S (2009) Biochim Biophys Acta 1790:1463PubMedGoogle Scholar
  13. 13.
    Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, SunderlandGoogle Scholar
  14. 14.
    Kimura M (1968) Nature 217:624PubMedCrossRefGoogle Scholar
  15. 15.
    Kanzok SM, Fechner A, Bauer H et al (2001) Science 291:643PubMedCrossRefGoogle Scholar
  16. 16.
    Gromer S, Johansson L, Bauer H et al (2003) Proc Natl Acad Sci USA 100:12618PubMedCrossRefGoogle Scholar
  17. 17.
    Kim HY, Gladyshev VN (2005) PLoS Biol 3:e375PubMedCrossRefGoogle Scholar
  18. 18.
    Weiss G (2002) Eur J Clin Invest 32:70PubMedCrossRefGoogle Scholar
  19. 19.
    Chua ACG, Graham RM, Trinder D et al (2007) Crit Rev Clin Lab Sci 44:413PubMedCrossRefGoogle Scholar
  20. 20.
    Datz C, Haas T, Rinner H et al (1998) Clin Chem 44:2429PubMedGoogle Scholar
  21. 21.
    Beutler E (2006) Annu Rev Med 57:331PubMedCrossRefGoogle Scholar
  22. 22.
    Merryweatherclarke AT, Pointon JJ, Shearman JD et al (1997) J Med Genet 34:275CrossRefGoogle Scholar
  23. 23.
    Stephens JC, Reich DE, Goldstein DB et al (1998) Am J Hum Genet 62:1507PubMedCrossRefGoogle Scholar
  24. 24.
    Merryweatherclarke AT, Pointon JJ, Jouanolle AM et al (2000) Genet Test 4:183CrossRefGoogle Scholar
  25. 25.
    Naugler C (2008) Med Hypotheses 70:691PubMedCrossRefGoogle Scholar
  26. 26.
    Aranda N, Viteri FE, Montserrat C et al (2010) Ann Hematol 89:767PubMedCrossRefGoogle Scholar
  27. 27.
    Swallow DM (2003) Annu Rev Genet 37:197PubMedCrossRefGoogle Scholar
  28. 28.
    Foster CB, Aswath K, Chanock SJ et al (2006) BMC Genet 7:56PubMedCrossRefGoogle Scholar
  29. 29.
    Green RE, Krause J, Briggs AW et al (2010) Science 328:710PubMedCrossRefGoogle Scholar
  30. 30.
    Jeong JY, Wang Y, Sytkowski AJ (2009) Biochem Biophys Res Commun 379:583PubMedCrossRefGoogle Scholar
  31. 31.
    Fang W, Goldberg ML, Pohl NM et al (2010) Carcinogenesis 31:1360PubMedCrossRefGoogle Scholar
  32. 32.
    Voight BF, Kudaravalli S, Wen X et al (2006) PLoS Biol 4:446CrossRefGoogle Scholar
  33. 33.
    Olds LC, Sibley E (2003) Hum Mol Genet 12:2333PubMedCrossRefGoogle Scholar
  34. 34.
    Haygood R, Fedrigo O, Hanson B et al (2007) Nat Genet 39:1140PubMedCrossRefGoogle Scholar
  35. 35.
    Pennington JA, Young BE (1991) J Am Diet Assoc 91:179PubMedGoogle Scholar
  36. 36.
    Müller C, Wingler K, Brigelius-Flohé R (2003) Biol Chem 384:11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Evolutionary GeneticsMax Planck Institute for Evolutionary AnthropologyLeipzigGermany

Personalised recommendations