Assembly and Architecture of HIV

  • Barbie K. Ganser-PornillosEmail author
  • Mark YeagerEmail author
  • Owen PornillosEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 726)


HIV forms spherical, membrane-enveloped, pleomorphic virions, 1,000–1,500 Å in diameter, which contain two copies of its single-stranded, positive-sense RNA genome. Virus particles initially bud from host cells in a noninfectious or immature form, in which the genome is further encapsulated inside a spherical protein shell composed of around 2,500 copies of the virally encoded Gag polyprotein. The Gag molecules are radially arranged, adherent to the inner leaflet of the viral membrane, and closely associated as a hexagonal, paracrystalline lattice. Gag comprises three major structural domains called MA, CA, and NC. For immature virions to become infectious, they must undergo a maturation process that is initiated by proteolytic processing of Gag by the viral protease. The new Gag-derived proteins undergo dramatic rearrangements to form the mature virus. The mature MA protein forms a “matrix” layer and remains attached to the viral envelope, NC condenses with the genome, and approximately 1,500 copies of CA assemble into a new cone-shaped protein shell, called the mature capsid, which surrounds the genomic ribonucleoprotein complex. The HIV capsid conforms to the mathematical principles of a fullerene shell, in which the CA subunits form about 250 CA hexamers arrayed on a variably curved hexagonal lattice, which is closed by incorporation of exactly 12 pentamers, seven pentamers at the wide end and five at the narrow end of the cone. This chapter describes our current understanding of HIV’s virion architecture and its dynamic transformations: the process of virion assembly as orchestrated by Gag, the architecture of the immature virion, the virus maturation process, and the structure of the mature capsid.


Adjacent Subunit Saturated Fatty Acid Chain Immature Virion Unsaturated Fatty Acid Chain Membrane Fission 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviated Virus Names


Human immunodeficiency virus type 1


Human T-cell leukemia virus


Murine leukemia virus


Mason-Pfizer monkey virus


Rous sarcoma virus



HIV research in the Yeager laboratory is supported by grants from the US National Institutes of Health (RO1-GM066087 and P50-GM082545). We thank John Briggs, Rebecca Craven, Alasdair Steven, and Elizabeth Wright for generously supplying materials for figures; Kelly Dryden and Jeong-Hyun Lee for assistance in preparing figures; and Wes Sundquist for helpful discussions. We apologize to colleagues whose works were not cited due to lack of space or inadvertent omission.


  1. Accola MA, Höglund S, Göttlinger HG (1998) A putative α-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J Virol 72:2072–2078PubMedGoogle Scholar
  2. Alcaraz LA, del Álamo M, Barrera FN et al (2007) Flexibility in HIV-1 assembly subunits: solution structure of the monomeric C-terminal domain of the capsid protein. Biophys J 93:1264–1276PubMedGoogle Scholar
  3. Aloia RC, Tian H, Jensen FC (1993) Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc Natl Acad Sci USA 90:5181–5185PubMedGoogle Scholar
  4. Bailey GD, Hyun JK, Mitra AK et al (2009) Proton-linked dimerization of a retroviral capsid protein initiates capsid assembly. Structure 17:737–748PubMedGoogle Scholar
  5. Bajorek M, Schubert HL, McCullough J et al (2009) Structural basis for ESCRT-III protein autoinhibition. Nat Struct Mol Biol 16:754–762PubMedGoogle Scholar
  6. Bartonova V, Igonet S, Sticht J et al (2008) Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein. J Biol Chem 283:32024–32033PubMedGoogle Scholar
  7. Benjamin J, Ganser-Pornillos BK, Tivol WF et al (2005) Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. J Mol Biol 346:577–588PubMedGoogle Scholar
  8. Bouamr F, Melillo JA, Wang MQ et al (2003) PPPYEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101. J Virol 77:11882–11895PubMedGoogle Scholar
  9. Bowzard JB, Wills JW, Craven RC (2001) Second-site suppressors of Rous sarcoma virus CA mutations: evidence for interdomain interactions. J Virol 75:6850–6856PubMedGoogle Scholar
  10. Briggs JAG, Wilk T, Welker R et al (2003) Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22:1707–1715PubMedGoogle Scholar
  11. Briggs JA, Grünewald K, Glass B et al (2006) The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14:15–20PubMedGoogle Scholar
  12. Briggs JAG, Riches JD, Glass B et al (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci USA 106:11090–11095PubMedGoogle Scholar
  13. Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7PubMedGoogle Scholar
  14. Brügger B, Glass B, Haberkant P et al (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci USA 103:2641–2646PubMedGoogle Scholar
  15. Butan C, Winkler DC, Heymann JB et al (2008) RSV capsid polymorphism correlates with polymerization efficiency and envelope glycoprotein content: implications that nucleation controls morphogenesis. J Mol Biol 376:1168–1181PubMedGoogle Scholar
  16. Byeon I-JL, Meng X, Jung J et al (2009) Structural convergence between cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139:780–790PubMedGoogle Scholar
  17. Campbell S, Rein A (1999) In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain. J Virol 73:2270–2279PubMedGoogle Scholar
  18. Campbell S, Vogt VM (1995) Self-assembly in vitro of purified CA-NC proteins from Rous sarcoma virus and human immunodeficiency virus type 1. J Virol 69:6487–6497PubMedGoogle Scholar
  19. Campbell S, Vogt VM (1997) In vitro assembly of virus-like particles with Rous sarcoma virus Gag deletion mutants: identification of the p10 domain as a morphological determinant in the formation of spherical particles. J Virol 71:4425–4435PubMedGoogle Scholar
  20. Campbell S, Fisher RJ, Towler EM et al (2001) Modulation of HIV-like particle assembly in vitro by inositol phosphates. Proc Natl Acad Sci USA 98:10875–10879PubMedGoogle Scholar
  21. Campos-Olivas R, Newman JL, Summers MF (2000) Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J Mol Biol 296:633–649PubMedGoogle Scholar
  22. Cardone G, Purdy JG, Cheng N et al (2009) Visualization of a missing link in retrovirus capsid assembly. Nature 457:694–698PubMedGoogle Scholar
  23. Carlson L-A, Briggs JAG, Glass B et al (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4:592–599PubMedGoogle Scholar
  24. Carlton JG, Martin-Serrano J (2007) Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery. Science 316:1908–1912PubMedGoogle Scholar
  25. Caspar DLD, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27:1–24PubMedGoogle Scholar
  26. Cheslock SR, Poon DTK, Fu W et al (2003) Charged assembly helix motif in murine leukemia virus capsid: an important region for virus assembly and particle size determination. J Virol 77:7058–7066PubMedGoogle Scholar
  27. Chung H-Y, Morita E, von Schwedler U et al (2008) NEDD4L overexpression rescues the release and infectivity of human immunodeficiency virus type 1 constructs lacking PTAP and YPXL late domains. J Virol 82:4884–4897PubMedGoogle Scholar
  28. Dalton AK, Murray PS, Murray D et al (2005) Biochemical characterization of rous sarcoma virus MA protein interaction with membranes. J Virol 79:6227–6238PubMedGoogle Scholar
  29. Dalton AK, Ako-Adjei D, Murray PS et al (2007) Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain. J Virol 81:6434–6445PubMedGoogle Scholar
  30. Datta SAK, Curtis JE, Ratcliff W et al (2007a) Conformation of the HIV-1 Gag protein in solution. J Mol Biol 365:812–824PubMedGoogle Scholar
  31. Datta SAK, Zhao Z, Clark PK et al (2007b) Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch. J Mol Biol 365:799–811PubMedGoogle Scholar
  32. de Marco A, Davey NE, Ulbrich P et al (2010) Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J Virol 84:11729–11736PubMedGoogle Scholar
  33. Dey A, York D, Smalls-Mantey A et al (2005) Composition and sequence-dependent binding of RNA to the nucleocapsid protein of Moloney murine leukemia virus. Biochemistry 44:3735–3744PubMedGoogle Scholar
  34. Dorfman T, Mammano F, Haseltine WA et al (1994) Role of the matrix protein in the virion association of the human immunodeficiency virus type 1 envelope glycoprotein. J Virol 68:1689–1696PubMedGoogle Scholar
  35. Dryden KA, Wieland SF, Whitten-Bauer C et al (2006) Native Hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol Cell 22:843–850PubMedGoogle Scholar
  36. D’Souza V, Summers MF (2004) Structural basis for packaging the dimeric genome of Moloney murine leukaemia virus. Nature 431:586–590PubMedGoogle Scholar
  37. D’Souza V, Melamed J, Habib D et al (2001) Identification of a high affinity nucleocapsid protein binding element within the Moloney murine leukemia virus Ψ-RNA packaging signal: implications for genome recognition. J Mol Biol 314:217–232PubMedGoogle Scholar
  38. Ehrlich LS, Agresta BE, Carter CA (1992) Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. J Virol 66:4874–4883PubMedGoogle Scholar
  39. Fabrikant G, Lata S, Riches JD et al (2009) Computational model of membrane fission catalyzed by ESCRT-III. PLoS Comput Biol 5:e1000575PubMedGoogle Scholar
  40. Forshey BM, von Schwedler U, Sundquist WI et al (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76:5667–5677PubMedGoogle Scholar
  41. Freed EO, Martin MA (1995) Virion incorporation of envelope glycoproteins with long but not short cytoplasmic tails is blocked by specific, single amino acid substitutions in the human immunodeficiency virus type 1 matrix. J Virol 69:1984–1989PubMedGoogle Scholar
  42. Freed EO, Martin MA (1996) Domains of the human immunodeficiency virus type 1 matrix and gp41 cytoplasmic tail required for envelope incorporation into virions. J Virol 70:341–351PubMedGoogle Scholar
  43. Fu W, Rein A (1993) Maturation of dimeric viral RNA of Moloney murine leukemia virus. J Virol 67:5443–5449PubMedGoogle Scholar
  44. Fuller SD, Wilk T, Gowen BE et al (1997) Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 7:729–738PubMedGoogle Scholar
  45. Gamble TR, Yoo S, Vajdos FF et al (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278:849–853PubMedGoogle Scholar
  46. Ganser BK, Li S, Klishko VY et al (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283:80–83PubMedGoogle Scholar
  47. Ganser-Pornillos BK, von Schwedler UK, Stray KM et al (2004) Assembly properties of the human immunodeficiency virus type 1 CA protein. J Virol 78:2545–2552PubMedGoogle Scholar
  48. Ganser-Pornillos BK, Cheng A, Yeager M (2007) Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131:70–79PubMedGoogle Scholar
  49. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217PubMedGoogle Scholar
  50. Garrus JE, von Schwedler UK, Pornillos O et al (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65PubMedGoogle Scholar
  51. Ghazi-Tabatabai S, Saksena S, Short JM et al (2008) Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24. Structure 16:1345–1356PubMedGoogle Scholar
  52. Gherghe C, Lombo T, Leonard CW et al (2010) Definition of a high-affinity Gag recognition structure mediating packaging of a retroviral RNA genome. Proc Natl Acad Sci USA 107:19248–19253PubMedGoogle Scholar
  53. Gheysen D, Jacobs E, de Foresta F et al (1989) Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell 59:103–112PubMedGoogle Scholar
  54. Gitti RK, Lee BM, Walker J et al (1996) Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273:231–235PubMedGoogle Scholar
  55. Göttlinger HG, Sodroski JG, Haseltine WA (1989) Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86:5781–5785PubMedGoogle Scholar
  56. Göttlinger HG, Dorfman T, Sodroski JG et al (1991) Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc Natl Acad Sci USA 88:3195–3199PubMedGoogle Scholar
  57. Gross I, Hohenberg H, Kräusslich H-G (1997) In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem 249:592–600PubMedGoogle Scholar
  58. Gross I, Hohenberg H, Huckhagel C et al (1998) N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J Virol 72:4798–4810PubMedGoogle Scholar
  59. Gross I, Hohenberg H, Wilk T et al (2000) A conformational switch controlling HIV-1 morphogenesis. EMBO J 19:103–113PubMedGoogle Scholar
  60. Grünewald K, Desai P, Winkler DC et al (2003) Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398PubMedGoogle Scholar
  61. Hanson PI, Roth R, Lin Y et al (2008) Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 180:389–402PubMedGoogle Scholar
  62. Hermida-Matsumoto L, Resh MD (2000) Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 74:8670–8679PubMedGoogle Scholar
  63. Heymann JB, Butan C, Winkler DC et al (2008) Irregular and semi-regular polyhedral models for Rous sarcoma virus cores. Comput Math Methods Med 9:197–210PubMedGoogle Scholar
  64. Hill CP, Worthylake D, Bancroft DP et al (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci USA 93:3099–3104PubMedGoogle Scholar
  65. Hurley JH, Emr SD (2006) The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298PubMedGoogle Scholar
  66. Hyun J-K, Radjainia M, Kingston RL et al (2010) Proton-driven assembly of the Rous Sarcoma virus capsid protein results in the formation of icosahedral particles. J Biol Chem 285:15056–15064PubMedGoogle Scholar
  67. Ivanchenko S, Godinez WJ, Lampe M et al (2009) Dynamics of HIV-1 assembly and release. PLoS Pathog 5:e1000652PubMedGoogle Scholar
  68. Ivanov D, Tsodikov OV, Kasanov J et al (2007) Domain-swapped dimerization of the HIV-1 capsid C-terminal domain. Proc Natl Acad Sci USA 104:4353–4358PubMedGoogle Scholar
  69. Jin Z, Jin L, Peterson DL et al (1999) Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J Mol Biol 286:83–93PubMedGoogle Scholar
  70. Joint United Nations Programme on HIV/AIDS (2009) AIDS epidemic update. UNAIDS, GenevaGoogle Scholar
  71. Joshi SM, Vogt VM (2000) Role of the Rous sarcoma virus p10 domain in shape determination of Gag virus-like particles assembled in vitro and within Escherichia coli. J Virol 74:10260–10268PubMedGoogle Scholar
  72. Jouvenet N, Bieniasz PD, Simon SM (2008) Imaging the biogenesis of individual HIV-1 virions in live cells. Nature 454:236–240PubMedGoogle Scholar
  73. Jouvenet N, Simon SM, Bieniasz PD (2009) Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proc Natl Acad Sci USA 106:19114–19119PubMedGoogle Scholar
  74. Keller PW, Johnson MC, Vogt VM (2008) Mutations in the spacer peptide and adjoining sequences in Rous sarcoma virus Gag lead to tubular budding. J Virol 82:6788–6797PubMedGoogle Scholar
  75. Keller PW, Adamson CS, Heymann JB et al (2011) HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J Virol 85:1420–1428PubMedGoogle Scholar
  76. Kelly BN, Howard BR, Wang H et al (2006) Implications for viral capsid assembly from crystal structures of HIV-1 Gag1-278 and CA133-278N. Biochemistry 45:11257–11266PubMedGoogle Scholar
  77. Khorasanizadeh S, Campos-Olivas R, Summers MF (1999) Solution structure of the capsid protein from the human T-cell leukemia virus type-I. J Mol Biol 291:491–505PubMedGoogle Scholar
  78. Kikonyogo A, Bouamr F, Vana ML et al (2001) Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci USA 98:11199–11204PubMedGoogle Scholar
  79. Kingston RL, Fitzon-Ostendorp T, Eisenmesser EZ et al (2000) Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8:617–628PubMedGoogle Scholar
  80. Knejzlík Z, Smékalová Z, Ruml T et al (2007) Multimerization of the p12 domain is necessary for Mason-Pfizer monkey virus Gag assembly in vitro. Virology 365:260–270PubMedGoogle Scholar
  81. Kräusslich H-G (1991) Human immunodeficiency virus proteinase dimer as component of the viral polyprotein prevents particle assembly and viral infectivity. Proc Natl Acad Sci USA 88:3213–3217PubMedGoogle Scholar
  82. Kräusslich H-G, Fäcke M, Heuser A-M et al (1995) The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J Virol 69:3407–3419PubMedGoogle Scholar
  83. Lanman J, Lam TT, Barnes S et al (2003) Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J Mol Biol 325:759–772PubMedGoogle Scholar
  84. Lanman J, Lam TT, Emmett MR et al (2004) Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 11:676–677PubMedGoogle Scholar
  85. Lapatto R, Blundell T, Hemmings A et al (1989) X-ray analysis of HIV-1 proteinase at 2.7 Å resolution confirms structural homology among retroviral enzymes. Nature 342:299–302PubMedGoogle Scholar
  86. Lata S, Schoehn G, Jain A et al (2008) Helical structures of ESCRT-III are disassembled by VPS4. Science 321:1354–1357PubMedGoogle Scholar
  87. Le Blanc I, Prévost M-C, Dokhélar M-C et al (2002) The PPPY motif of human T-cell leukemia virus type 1 Gag protein is required early in the budding process. J Virol 76:10024–10029PubMedGoogle Scholar
  88. Li S, Hill CP, Sundquist WI et al (2000) Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407:409–413PubMedGoogle Scholar
  89. Li F, Goila-Gaur R, Salzwedel K et al (2003) PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc Natl Acad Sci USA 100:13555–13560PubMedGoogle Scholar
  90. Li H, Dou J, Ding L et al (2007) Myristoylation is required for human immunodeficiency virus type 1 Gag-Gag multimerization in mammalian cells. J Virol 81:12899–12910PubMedGoogle Scholar
  91. Liang C, Hu J, Russell RS et al (2002) Characterization of a putative α-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 Gag. J Virol 76:11729–11737PubMedGoogle Scholar
  92. Lopez-Vergès S, Camus G, Blot G et al (2006) Tail-interacting protein TIP47 is a connector between Gag and Env and is required for Env incorporation into HIV-1 virions. Proc Natl Acad Sci USA 103:14947–14952PubMedGoogle Scholar
  93. Martin-Serrano J, Zang T, Bieniasz PD (2001) HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nat Med 7:1313–1319PubMedGoogle Scholar
  94. Massiah MA, Starich MR, Paschall C et al (1994) Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol 244:198–223PubMedGoogle Scholar
  95. Miyazaki Y, Garcia EL, King SR et al (2010) An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 396:141–152PubMedGoogle Scholar
  96. Monroe EB, Kang S, Kyere SK et al (2010) Hydrogen/deuterium exchange analysis of HIV-1 capsid assembly and maturation. Structure 18:1483–1491PubMedGoogle Scholar
  97. Morellet N, Druillennec S, Lenoir C et al (2005) Helical structure determined by NMR of the HIV-1 (345-392) Gag sequence, surrounding p2: implications for particle assembly and RNA packaging. Protein Sci 14:375–386PubMedGoogle Scholar
  98. Morita E, Sandrin V, Chung H-Y et al (2007) Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J 26:4215–4227PubMedGoogle Scholar
  99. Mortuza GB, Haire LF, Stevens A et al (2004) High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431:481–485PubMedGoogle Scholar
  100. Mortuza GB, Dodding MP, Goldstone DC et al (2008) Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, Gag assembly and core formation. J Mol Biol 376:1493–1508PubMedGoogle Scholar
  101. Mortuza GB, Goldstone DC, Pashley C et al (2009) Structure of the capsid amino-terminal domain from the betaretrovirus, Jaagsiekte sheep retrovirus. J Mol Biol 386:1179–1192PubMedGoogle Scholar
  102. Müller B, Anders M, Akiyama H et al (2009) HIV-1 Gag processing intermediates trans-dominantly interfere with HIV-1 infectivity. J Biol Chem 284:29692–29703PubMedGoogle Scholar
  103. Murakami T, Freed EO (2000a) Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and α-helix 2 of the gp41 cytoplasmic tail. J Virol 74:3548–3554PubMedGoogle Scholar
  104. Murakami T, Freed EO (2000b) The long cytoplasmic tail of gp41 is required in a cell type-dependent manner for HIV-1 envelope glycoprotein incorporation into virions. Proc Natl Acad Sci USA 97:343–348PubMedGoogle Scholar
  105. Nandhagopal N, Simpson AA, Johnson MC et al (2004) Dimeric Rous sarcoma virus capsid protein structure relevant to immature Gag assembly. J Mol Biol 335:275–282PubMedGoogle Scholar
  106. Navia MA, Fitzgerald PMD, McKeever BM et al (1989) Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature 337:615–620PubMedGoogle Scholar
  107. Newman JL, Butcher EW, Patel DT et al (2004) Flexibility in the P2 domain of the HIV-1 Gag polyprotein. Protein Sci 13:2101–2107PubMedGoogle Scholar
  108. Nguyen DH, Hildreth JE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74:3264–3272PubMedGoogle Scholar
  109. Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci USA 98:13925–13930PubMedGoogle Scholar
  110. Ono A, Demirov D, Freed EO (2000) Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding. J Virol 74:5142–5150PubMedGoogle Scholar
  111. Ono A, Ablan SD, Lockett SJ et al (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci USA 101:14889–14894PubMedGoogle Scholar
  112. Paillart J-C, Göttlinger HG (1999) Opposing effects of human immunodeficiency virus type 1 matrix mutations support a myristyl switch model of Gag membrane targeting. J Virol 73:2604–2612PubMedGoogle Scholar
  113. Pettit SC, Sheng N, Tritch R et al (1998) The regulation of sequential processing of HIV-1 Gag by the viral protease. Adv Exp Med Biol 436:15–25PubMedGoogle Scholar
  114. Phillips JM, Murray PS, Murray D et al (2008) A molecular switch required for retrovirus assembly participates in the hexagonal immature lattice. EMBO J 27:1411–1420PubMedGoogle Scholar
  115. Pornillos O, Alam SL, Davis DR et al (2002) Structure of the Tsg101 UEV domain in complex with the PTAP motif of the HIV-1 p6 protein. Nat Struct Biol 9:812–817PubMedGoogle Scholar
  116. Pornillos O, Ganser-Pornillos BK, Kelly BN et al (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137:1282–1292PubMedGoogle Scholar
  117. Pornillos O, Ganser-Pornillos BK, Banumathi S et al (2010) Disulfide bond stabilization of the hexameric capsomer of human immunodeficiency virus. J Mol Biol 401:985–995PubMedGoogle Scholar
  118. Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469:424–427PubMedGoogle Scholar
  119. Purdy JG, Flanagan JM, Ropson IJ et al (2008) Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly. J Virol 82:5951–5961PubMedGoogle Scholar
  120. Purdy JG, Flanagan JM, Ropson IJ et al (2009) Retroviral capsid assembly: a role for the CA dimer in initiation. J Mol Biol 389:438–451PubMedGoogle Scholar
  121. Reil H, Bukovsky AA, Gelderblom HR et al (1998) Efficient HIV-1 replication can occur in the absence of the viral matrix protein. EMBO J 17:2699–2708PubMedGoogle Scholar
  122. Rumlova-Klikova M, Hunter E, Nermut MV et al (2000) Analysis of Mason-Pfizer monkey virus Gag domains required for capsid assembly in bacteria: role of the N-terminal proline residue of CA in directing particle shape. J Virol 74:8452–8459PubMedGoogle Scholar
  123. Saad JS, Miller J, Tai J et al (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci USA 103:11364–11369PubMedGoogle Scholar
  124. Spearman P, Wang J-J, Heyden NV et al (1994) Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J Virol 68:3232–3242PubMedGoogle Scholar
  125. Spearman P, Horton R, Ratner L et al (1997) Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J Virol 71:6582–6592PubMedGoogle Scholar
  126. Strack B, Calistri A, Craig S et al (2003) AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114:689–699PubMedGoogle Scholar
  127. Swanstrom R, Wills JW (1997) Synthesis, assembly and processing of viral proteins. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  128. Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9:537–543PubMedGoogle Scholar
  129. Tang C, Loeliger E, Luncsford P et al (2004) Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci USA 101:517–522PubMedGoogle Scholar
  130. Ternois F, Sticht J, Duquerroy S et al (2005) The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nat Struct Mol Biol 12:678–682PubMedGoogle Scholar
  131. Tritch RJ, Cheng Y-SE, Yin FH et al (1991) Mutagenesis of protease cleavage sites in the human immunodeficiency virus type 1 Gag polyprotein. J Virol 65:922–930PubMedGoogle Scholar
  132. Usami Y, Popov S, Popova E et al (2008) Efficient and specific rescue of human immunodeficiency virus type 1 budding defects by a Nedd4-like ubiquitin ligase. J Virol 82:4898–4907PubMedGoogle Scholar
  133. VerPlank L, Bouamr F, LaGrassa TJ et al (2001) Tsg101, a homologue of ubiquitin-conjugating (E2) enzymes, binds the L domain in HIV type 1 Pr55Gag. Proc Natl Acad Sci USA 98:7724–7729PubMedGoogle Scholar
  134. Vogt VM (1997) Retroviral virions and genomes. In: Coffin JM, Hughes SH, Varmus HE (eds) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  135. von Schwedler UK, Stemmler TL, Klishko VY et al (1998) Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J 17:1555–1568Google Scholar
  136. von Schwedler UK, Stray KM, Garrus JE et al (2003a) Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77:5439–5450Google Scholar
  137. von Schwedler UK, Stuchell M, Müller B et al (2003b) The protein network of HIV budding. Cell 114:701–713Google Scholar
  138. Wang C-T, Zhang Y, McDermott J et al (1993) Conditional infectivity of a human immunodeficiency virus matrix domain deletion mutant. J Virol 67:7067–7076PubMedGoogle Scholar
  139. Wang MQ, Kim W, Gao G et al (2003) Endophilins interact with Moloney murine leukemia virus Gag and modulate virion production. J Biol 3:4PubMedGoogle Scholar
  140. Watts JM, Dang KK, Gorelick RJ et al (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460:711–716PubMedGoogle Scholar
  141. Wiegers K, Rutter G, Kottler H et al (1998) Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J Virol 72:2846–2854PubMedGoogle Scholar
  142. Wollert T, Wunder C, Lippincott-Schwartz J et al (2009) Membrane scission by the ESCRT-III complex. Nature 458:172–177PubMedGoogle Scholar
  143. Wong HC, Shin R, Krishna NR (2008) Solution structure of a double mutant of the carboxy-terminal dimerization domain of the HIV-1 capsid protein. Biochemistry 47:2289–2297PubMedGoogle Scholar
  144. Worthylake DK, Wang H, Yoo S et al (1999) Structures of the HIV-1 capsid protein dimerization domain at 2.6 Å resolution. Acta Crystallogr D Biol Crystallogr 55:85–92PubMedGoogle Scholar
  145. Wright ER, Schooler JB, Ding HJ et al (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26:2218–2226PubMedGoogle Scholar
  146. Yasuda J, Hunter E, Nakao M et al (2002) Functional involvement of a novel Nedd4-like ubiquitin ligase on retrovirus budding. EMBO Rep 3:636–640PubMedGoogle Scholar
  147. Yeager M, Wilson-Kubalek EM, Weiner SG et al (1998) Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci USA 95:7299–7304PubMedGoogle Scholar
  148. Yu X, Yuan X, Matsuda Z et al (1992) The matrix protein of human immunodeficiency virus type 1 is required for incorporation of viral envelope protein into mature virions. J Virol 66:4966–4971PubMedGoogle Scholar
  149. Zacharias DA, Violin JD, Newton AC et al (2002) Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science 296:913–916PubMedGoogle Scholar
  150. Zhai Q, Fisher RD, Chung H-Y et al (2008) Structural and functional studies of ALIX interactions with YPXnL late domains of HIV-1 and EIAV. Nat Struct Mol Biol 15:43–49PubMedGoogle Scholar
  151. Zhang Y, Barklis E (1997) Effects of nucleocapsid mutations on human immunodeficiency virus assembly and RNA encapsidation. J Virol 71:6765–6776PubMedGoogle Scholar
  152. Zhang W, Mukhopadhyay S, Pletnev SV et al (2002) Placement of the structural proteins in Sindbis virus. J Virol 76:11645–11658PubMedGoogle Scholar
  153. Zhou W, Parent LJ, Wills JW et al (1994) Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 68:2556–2569PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Molecular Physiology and Biological PhysicsUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.Department of Cell BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations