Bunyavirus: Structure and Replication

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 726)


The Bunyaviridae family is comprised of a large number of negative-sense, single-stranded RNA viruses that infect animals, insects, and plants. The tripartite genome of bunyaviruses, encapsidated in the form of individual ribonucleoprotein complexes, encodes four structural proteins, the glycoproteins Gc and Gn, the nucleoprotein N, and the viral polymerase L. Some bunyaviruses also use an ambi-sense strategy to encode the nonstructural proteins NSs and NSm. While some bunyaviruses have a T = 12 icosahedral symmetry, others only have locally ordered capsids, or capsids with no detectable symmetry. Bunyaviruses enter cells through clathrin-mediated endocytosis or phagocytosis. In endosome, viral glycoproteins facilitate membrane fusion at acidic pH, thus allowing bunyaviruses to uncoat and deliver their genomic RNA into host cytoplasm. Bunyaviruses replicate in cytoplasm where the viral polymerase L catalyzes both transcription and replication of the viral genome. While transcription requires a cap primer for initiation and ends at specific termination signals before the 3′ end of the template is reached, replication copies the entire template and does not depend on any primer for initiation. This review will discuss some of the most interesting aspects of bunyavirus replication, including L protein/N protein-mediated cap snatching, prime-and-realign for transcription and replication initiation, translation-coupled transcription, sequence/secondary structure-dependent transcription termination, ribonucleoprotein encapsidation, and N protein-mediated initiation of viral protein translation. Recent developments on the structure and functional characterization of the bunyavirus capsid and the RNA synthesis machineries (including both protein L and N) will also be discussed.



Borna disease virus


Bunyamwera virus


Crimean–Congo hemorrhagic fever virus


Complementary RNA or antigenomic RNA


Electron microscopy


Influenza A virus


Jamestown Canyon virus


La Crosse virus




Nontranslated terminal region


Ovarian tumor-like protease motif


Punta Toro virus


RNA-dependent RNA polymerase


Ribonucleoprotein complex


Respiratory syncytial virus


Rabies virus


Rift Valley fever virus


Sin Nombre virus


Tomato spotted wilt virus


Uukuniemi virus


Viral RNA or genomic RNA


Vesicular stomatitis virus



We thank Aaron Collier for critical reading of the manuscript. The authors are supported by grants C-1565 from the Welch Foundation and AI077785 from the National Institutes of Health.


  1. Abraham G, Pattnaik AK (1983) Early RNA synthesis in Bunyamwera virus-infected cells. J Gen Virol 64(Pt 6):1277–1290PubMedCrossRefGoogle Scholar
  2. Accardi L, Prehaud C, Di Bonito P, Mochi S, Bouloy M, Giorgi C (2001) Activity of Toscana and Rift Valley fever virus transcription complexes on heterologous templates. J Gen Virol 82:781–785PubMedGoogle Scholar
  3. Albertini AA, Wernimont AK, Muziol T, Ravelli RB, Clapier CR, Schoehn G, Weissenhorn W, Ruigrok RW (2006) Crystal structure of the rabies virus nucleoprotein-RNA complex. Science 313:360–363PubMedCrossRefGoogle Scholar
  4. Alfadhli A, Love Z, Arvidson B, Seeds J, Willey J, Barklis E (2001) Hantavirus nucleocapsid protein oligomerization. J Virol 75:2019–2023PubMedCrossRefGoogle Scholar
  5. Barr JN (2007) Bunyavirus mRNA synthesis is coupled to translation to prevent premature transcription termination. RNA 13:731–736PubMedCrossRefGoogle Scholar
  6. Barr JN, Wertz GW (2004) Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J Virol 78:1129–1138PubMedCrossRefGoogle Scholar
  7. Barr JN, Wertz GW (2005) Role of the conserved nucleotide mismatch within 3′- and 5′-terminal regions of Bunyamwera virus in signaling transcription. J Virol 79:3586–3594PubMedCrossRefGoogle Scholar
  8. Barr JN, Elliott RM, Dunn EF, Wertz GW (2003) Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311:326–338PubMedCrossRefGoogle Scholar
  9. Barr JN, Rodgers JW, Wertz GW (2006) Identification of the Bunyamwera bunyavirus transcription termination signal. J Gen Virol 87:189–198PubMedCrossRefGoogle Scholar
  10. Battisti AJ, Chu YK, Chipman PR, Kaufmann B, Jonsson CB, Rossmann MG (2011) Structural studies of Hantaan virus. J Virol 85:835–841PubMedCrossRefGoogle Scholar
  11. Bellocq C, Raju R, Patterson J, Kolakofsky D (1987) Translational requirement of La Crosse virus S-mRNA synthesis: in vitro studies. J Virol 61:87–95PubMedGoogle Scholar
  12. Bergeron E, Albarino CG, Khristova ML, Nichol ST (2010) Crimean-Congo hemorrhagic fever virus-encoded ovarian tumor protease activity is dispensable for virus RNA polymerase function. J Virol 84:216–226PubMedCrossRefGoogle Scholar
  13. Bishop DH, Gay ME, Matsuoko Y (1983) Nonviral heterogeneous sequences are present at the 5′ ends of one species of snowshoe hare bunyavirus S complementary RNA. Nucleic Acids Res 11:6409–6418PubMedCrossRefGoogle Scholar
  14. Blakqori G, Kochs G, Haller O, Weber F (2003) Functional L polymerase of La Crosse virus allows in vivo reconstitution of recombinant nucleocapsids. J Gen Virol 84:1207–1214PubMedCrossRefGoogle Scholar
  15. Blakqori G, van Knippenberg I, Elliott RM (2009) Bunyamwera orthobunyavirus S-segment untranslated regions mediate poly(A) tail-independent translation. J Virol 83:3637–3646PubMedCrossRefGoogle Scholar
  16. Booth TF, Gould EA, Nuttall PA (1991) Structure and morphogenesis of Dugbe virus (Bunyaviridae, Nairovirus) studied by immunogold electron microscopy of ultrathin cryosections. Virus Res 21:199–212PubMedCrossRefGoogle Scholar
  17. Boudko SP, Kuhn RJ, Rossmann MG (2007) The coiled-coil domain structure of the Sin Nombre virus nucleocapsid protein. J Mol Biol 366:1538–1544PubMedCrossRefGoogle Scholar
  18. Bouloy M, Pardigon N, Vialat P, Gerbaud S, Girard M (1990) Characterization of the 5′ and 3′ ends of viral messenger RNAs isolated from BHK21 cells infected with germiston virus (bunyavirus). Virology 175:50–58PubMedCrossRefGoogle Scholar
  19. Collett MS (1986) Messenger RNA of the M segment RNA of Rift Valley fever virus. Virology 151:151–156PubMedCrossRefGoogle Scholar
  20. de Haan P, Wagemakers L, Peters D, Goldbach R (1990) The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71(Pt 5):1001–1007PubMedCrossRefGoogle Scholar
  21. de Medeiros RB, Figueiredo J, Resende Rde O, De Avila AC (2005) Expression of a viral polymerase-bound host factor turns human cell lines permissive to a plant- and insect-infecting virus. Proc Natl Acad Sci USA 102:1175–1180PubMedCrossRefGoogle Scholar
  22. Dias A, Bouvier D, Crepin T, McCarthy AA, Hart DJ, Baudin F, Cusack S, Ruigrok RW (2009) The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature 458:914–918PubMedCrossRefGoogle Scholar
  23. Duijsings D, Kormelink R, Goldbach R (2001) In vivo analysis of the TSWV cap-snatching mechanism: single base complementarity and primer length requirements. EMBO J 20:2545–2552PubMedCrossRefGoogle Scholar
  24. Dunn EF, Pritlove DC, Jin H, Elliott RM (1995) Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–143PubMedCrossRefGoogle Scholar
  25. Egelman EH, Wu SS, Amrein M, Portner A, Murti G (1989) The Sendai virus nucleocapsid exists in at least four different helical states. J Virol 63:2233–2243PubMedGoogle Scholar
  26. Eifan SA, Elliott RM (2009) Mutational analysis of the Bunyamwera orthobunyavirus nucleocapsid protein gene. J Virol 83:11307–11317PubMedCrossRefGoogle Scholar
  27. Elliott RM (1990) Molecular biology of the Bunyaviridae. J Gen Virol 71(Pt 3):501–522PubMedCrossRefGoogle Scholar
  28. Emery VC, Bishop DH (1987) Characterization of Punta Toro S mRNA species and identification of an inverted complementary sequence in the intergenic region of Punta Toro Phlebovirus ambisense S RNA that is involved in mRNA transcription termination. Virology 156:1–11PubMedCrossRefGoogle Scholar
  29. Eshita Y, Ericson B, Romanowski V, Bishop DH (1985) Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species. J Virol 55:681–689PubMedGoogle Scholar
  30. Flick R, Pettersson RF (2001) Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol 75:1643–1655PubMedCrossRefGoogle Scholar
  31. Flick R, Elgh F, Pettersson RF (2002) Mutational analysis of the Uukuniemi virus (Bunyaviridae family) promoter reveals two elements of functional importance. J Virol 76:10849–10860PubMedCrossRefGoogle Scholar
  32. Fontana J, Lopez-Montero N, Elliott RM, Fernandez JJ, Risco C (2008) The unique architecture of Bunyamwera virus factories around the golgi complex. Cell Microbiol 10:2012–2028PubMedCrossRefGoogle Scholar
  33. Freiberg AN, Sherman MB, Morais MC, Holbrook MR, Watowich SJ (2008) Three-dimensional organization of Rift Valley fever virus revealed by cryoelectron tomography. J Virol 82:10341–10348PubMedCrossRefGoogle Scholar
  34. Garcin D, Kolakofsky D (1990) A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 64:6196–6203PubMedGoogle Scholar
  35. Garcin D, Kolakofsky D (1992) Tacaribe arenavirus RNA synthesis in vitro is primer dependent and suggests an unusual model for the initiation of genome replication. J Virol 66:1370–1376PubMedGoogle Scholar
  36. Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, Kolakofsky D (1995) The 5′ ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69:5754–5762PubMedGoogle Scholar
  37. Garry CE, Garry RF (2004) Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Theor Biol Med Model 1:10PubMedCrossRefGoogle Scholar
  38. Gavrilovskaya IN, Brown EJ, Ginsberg MH, Mackow ER (1999) Cellular entry of hantaviruses which cause hemorrhagic fever with renal syndrome is mediated by beta3 integrins. J Virol 73:3951–3959PubMedGoogle Scholar
  39. Green TJ, Zhang X, Wertz GW, Luo M (2006) Structure of the vesicular stomatitis virus nucleoprotein-RNA complex. Science 313:357–360PubMedCrossRefGoogle Scholar
  40. Habjan M, Penski N, Wagner V, Spiegel M, Overby AK, Kochs G, Huiskonen JT, Weber F (2009) Efficient production of Rift Valley fever virus-like particles: the antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology 385:400–408PubMedCrossRefGoogle Scholar
  41. Haque A, Mir MA (2010) Interaction of hantavirus nucleocapsid protein with ribosomal protein S19. J Virol 84:12450–12453PubMedCrossRefGoogle Scholar
  42. Honig JE, Osborne JC, Nichol ST (2004) Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321:29–35PubMedCrossRefGoogle Scholar
  43. Huiskonen JT, Overby AK, Weber F, Grunewald K (2009) Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J Virol 83:3762–3769PubMedCrossRefGoogle Scholar
  44. Huiskonen JT, Hepojoki J, Laurinmaki P, Vaheri A, Lankinen H, Butcher SJ, Grunewald K (2010) Electron cryotomography of Tula Hantavirus suggests a unique assembly paradigm for enveloped viruses. J Virol 84:4889–4897PubMedCrossRefGoogle Scholar
  45. Hutchinson KL, Peters CJ, Nichol ST (1996) Sin Nombre virus mRNA synthesis. Virology 224:139–149PubMedCrossRefGoogle Scholar
  46. Ihara T, Matsuura Y, Bishop DH (1985) Analyses of the mRNA transcription processes of Punta Toro Phlebovirus (Bunyaviridae). Virology 147:317–325PubMedCrossRefGoogle Scholar
  47. Ikegami T, Peters CJ, Makino S (2005) Rift Valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system. J Virol 79:5606–5615PubMedCrossRefGoogle Scholar
  48. Jin H, Elliott RM (1993a) Characterization of Bunyamwera virus S RNA that is transcribed and replicated by the L protein expressed from recombinant vaccinia virus. J Virol 67:1396–1404PubMedGoogle Scholar
  49. Jin H, Elliott RM (1993b) Non-viral sequences at the 5′ ends of Dugbe nairovirus S mRNAs. J Gen Virol 74(Pt 10):2293–2297PubMedCrossRefGoogle Scholar
  50. Kainz M, Hilson P, Sweeney L, Derose E, German TL (2004) Interaction between tomato spotted wilt virus N protein monomers involves nonelectrostatic forces governed by multiple distinct regions in the primary structure. Phytopathology 94:759–765PubMedCrossRefGoogle Scholar
  51. Kariwa H, Tanabe H, Mizutani T, Kon Y, Lokugamage K, Lokugamage N, Iwasa MA, Hagiya T, Araki K, Yoshimatsu K, Arikawa J, Takashima I (2003) Synthesis of Seoul virus RNA and structural proteins in cultured cells. Arch Virol 148:1671–1685PubMedCrossRefGoogle Scholar
  52. Katz A, Freiberg AN, Backstrom V, Schulz AR, Mateos A, Holm L, Pettersson RF, Vaheri A, Flick R, Plyusnin A (2010) Oligomerization of Uukuniemi virus nucleocapsid protein. Virol J 7:187PubMedCrossRefGoogle Scholar
  53. Kaukinen P, Koistinen V, Vapalahti O, Vaheri A, Plyusnin A (2001) Interaction between molecules of hantavirus nucleocapsid protein. J Gen Virol 82:1845–1853PubMedGoogle Scholar
  54. Kaukinen P, Kumar V, Tulimaki K, Engelhardt P, Vaheri A, Plyusnin A (2004) Oligomerization of Hantavirus N protein: C-terminal alpha-helices interact to form a shared hydrophobic space. J Virol 78:13669–13677PubMedCrossRefGoogle Scholar
  55. Kaukinen P, Vaheri A, Plyusnin A (2005) Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150:1693–1713PubMedCrossRefGoogle Scholar
  56. Kohl A, Dunn EF, Lowen AC, Elliott RM (2004) Complementarity, sequence and structural elements within the 3′ and 5′ non-coding regions of the Bunyamwera orthobunyavirus S segment determine promoter strength. J Gen Virol 85:3269–3278PubMedCrossRefGoogle Scholar
  57. Kormelink R, van Poelwijk F, Peters D, Goldbach R (1992) Non-viral heterogeneous sequences at the 5′ ends of tomato spotted wilt virus mRNAs. J Gen Virol 73(Pt 8):2125–2128PubMedCrossRefGoogle Scholar
  58. Kozak M, Shatkin AJ (1978) Migration of 40S ribosomal subunits on messenger RNA in the presence of edeine. J Biol Chem 253:6568–6577PubMedGoogle Scholar
  59. Kukkonen SK, Vaheri A, Plyusnin A (1998) Completion of the Tula hantavirus genome sequence: properties of the L segment and heterogeneity found in the 3′ termini of S and L genome RNAs. J Gen Virol 79(Pt 11):2615–2622PubMedGoogle Scholar
  60. Kukkonen SK, Vaheri A, Plyusnin A (2005) L protein, the RNA-dependent RNA polymerase of Hantaviruses. Arch Virol 150:533–556PubMedCrossRefGoogle Scholar
  61. Le May N, Dubaele S, Proietti De Santis L, Billecocq A, Bouloy M, Egly JM (2004) TFIIH transcription factor, a target for the Rift Valley hemorrhagic fever virus. Cell 116:541–550PubMedCrossRefGoogle Scholar
  62. Le May N, Gauliard N, Billecocq A, Bouloy M (2005) The N terminus of Rift Valley fever virus nucleoprotein is essential for dimerization. J Virol 79:11974–11980PubMedCrossRefGoogle Scholar
  63. Leonard VH, Kohl A, Osborne JC, McLees A, Elliott RM (2005) Homotypic interaction of Bunyamwera virus nucleocapsid protein. J Virol 79:13166–13172PubMedCrossRefGoogle Scholar
  64. Lopez N, Muller R, Prehaud C, Bouloy M (1995) The L protein of Rift Valley fever virus can rescue viral ribonucleoproteins and transcribe synthetic genome-like RNA molecules. J Virol 69:3972–3979PubMedGoogle Scholar
  65. Lowen AC, Boyd A, Fazakerley JK, Elliott RM (2005) Attenuation of bunyavirus replication by rearrangement of viral coding and noncoding sequences. J Virol 79:6940–6946PubMedCrossRefGoogle Scholar
  66. Martin ML, Lindsey-Regnery H, Sasso DR, McCormick JB, Palmer E (1985) Distinction between Bunyaviridae genera by surface structure and comparison with Hantaan virus using negative stain electron microscopy. Arch Virol 86:17–28PubMedCrossRefGoogle Scholar
  67. Mir MA, Panganiban AT (2004) Trimeric Hantavirus nucleocapsid protein binds specifically to the viral RNA panhandle. J Virol 78:8281–8288PubMedCrossRefGoogle Scholar
  68. Mir MA, Panganiban AT (2005) The Hantavirus nucleocapsid protein recognizes specific features of the viral RNA panhandle and is altered in conformation upon RNA binding. J Virol 79:1824–1835PubMedCrossRefGoogle Scholar
  69. Mir MA, Panganiban AT (2006a) The bunyavirus nucleocapsid protein is an RNA chaperone: possible roles in viral RNA panhandle formation and genome replication. RNA 12:272–282PubMedCrossRefGoogle Scholar
  70. Mir MA, Panganiban AT (2006b) Characterization of the RNA chaperone activity of Hantavirus nucleocapsid protein. J Virol 80:6276–6285PubMedCrossRefGoogle Scholar
  71. Mir MA, Panganiban AT (2008) A protein that replaces the entire cellular eIF4F complex. EMBO J 27:3129–3139PubMedCrossRefGoogle Scholar
  72. Mir MA, Brown B, Hjelle B, Duran WA, Panganiban AT (2006) Hantavirus N protein exhibits genus-specific recognition of the viral RNA panhandle. J Virol 80:11283–11292PubMedCrossRefGoogle Scholar
  73. Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT (2008) Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci USA 105:19294–19299PubMedCrossRefGoogle Scholar
  74. Mir MA, Sheema S, Haseeb A, Haque A (2010) Hantavirus nucleocapsid protein has distinct m7G cap- and RNA-binding sites. J Biol Chem 285:11357–11368PubMedCrossRefGoogle Scholar
  75. Mohamed NA (1981) Isolation and characterization of subviral structures from tomato spotted wilt virus. J Gen Virol 53:197–206CrossRefGoogle Scholar
  76. Mohl BP, Barr JN (2009) Investigating the specificity and stoichiometry of RNA binding by the nucleocapsid protein of Bunyamwera virus. RNA 15:391–399PubMedCrossRefGoogle Scholar
  77. Obijeski JF, Bishop DH, Palmer EL, Murphy FA (1976) Segmented genome and nucleocapsid of La Crosse virus. J Virol 20:664–675PubMedGoogle Scholar
  78. Obijeski JF, McCauley J, Skehel JJ (1980) Nucleotide sequences at the terminal of La Crosse virus RNAs. Nucleic Acids Res 8:2431–2438PubMedCrossRefGoogle Scholar
  79. Ogg MM, Patterson JL (2007) RNA binding domain of Jamestown Canyon virus S segment RNAs. J Virol 81:13754–13760PubMedCrossRefGoogle Scholar
  80. Ortega J, Martin-Benito J, Zurcher T, Valpuesta JM, Carrascosa JL, Ortin J (2000) Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 74:156–163PubMedCrossRefGoogle Scholar
  81. Osborne JC, Elliott RM (2000) RNA binding properties of Bunyamwera virus nucleocapsid protein and selective binding to an element in the 5′ terminus of the negative-sense S segment. J Virol 74:9946–9952PubMedCrossRefGoogle Scholar
  82. Overby AK, Popov V, Neve EP, Pettersson RF (2006) Generation and analysis of infectious virus-like particles of Uukuniemi virus (Bunyaviridae): a useful system for studying bunyaviral packaging and budding. J Virol 80:10428–10435PubMedCrossRefGoogle Scholar
  83. Overby AK, Pettersson RF, Neve EP (2007) The glycoprotein cytoplasmic tail of Uukuniemi virus (Bunyaviridae) interacts with ribonucleoproteins and is critical for genome packaging. J Virol 81:3198–3205PubMedCrossRefGoogle Scholar
  84. Overby AK, Pettersson RF, Grunewald K, Huiskonen JT (2008) Insights into bunyavirus architecture from electron cryotomography of Uukuniemi virus. Proc Natl Acad Sci USA 105:2375–2379PubMedCrossRefGoogle Scholar
  85. Panganiban AT, Mir MA (2009) Bunyavirus N: eIF4F surrogate and cap-guardian. Cell Cycle 8:1332–1337PubMedCrossRefGoogle Scholar
  86. Patterson JL, Kolakofsky D (1984) Characterization of La Crosse virus small-genome transcripts. J Virol 49:680–685PubMedGoogle Scholar
  87. Patterson JL, Holloway B, Kolakofsky D (1984) La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease. J Virol 52:215–222PubMedGoogle Scholar
  88. Pettersson RF, von Bonsdorff CH (1975) Ribonucleoproteins of Uukuniemi virus are circular. J Virol 15:386–392PubMedGoogle Scholar
  89. Plassmeyer ML, Soldan SS, Stachelek KM, Martin-Garcia J, Gonzalez-Scarano F (2005) California serogroup Gc (G1) glycoprotein is the principal determinant of pH-dependent cell fusion and entry. Virology 338:121–132PubMedCrossRefGoogle Scholar
  90. Plassmeyer ML, Soldan SS, Stachelek KM, Roth SM, Martin-Garcia J, Gonzalez-Scarano F (2007) Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066–1087) as the fusion peptide. Virology 358:273–282PubMedCrossRefGoogle Scholar
  91. Raju R, Kolakofsky D (1989) The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base paired. J Virol 63:122–128PubMedGoogle Scholar
  92. Raymond DD, Piper ME, Gerrard SR, Smith JL (2010) Structure of the Rift Valley fever virus nucleocapsid protein reveals another architecture for RNA encapsidation. Proc Natl Acad Sci USA 107:11769–11774PubMedCrossRefGoogle Scholar
  93. Reguera J, Weber F, Cusack S (2010) Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription. PLoS Pathog 6:e1001101PubMedCrossRefGoogle Scholar
  94. Rodgers JW, Zhou Q, Green TJ, Barr JN, Luo M (2006) Purification, crystallization and preliminary X-ray crystallographic analysis of the nucleocapsid protein of Bunyamwera virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:361–364PubMedCrossRefGoogle Scholar
  95. Roland KL, Liu CG, Turnbough CL Jr (1988) Role of the ribosome in suppressing transcriptional termination at the pyrBI attenuator of Escherichia coli K-12. Proc Natl Acad Sci USA 85:7149–7153PubMedCrossRefGoogle Scholar
  96. Ronka H, Hilden P, Von Bonsdorff CH, Kuismanen E (1995) Homodimeric association of the spike glycoproteins G1 and G2 of Uukuniemi virus. Virology 211:241–250PubMedCrossRefGoogle Scholar
  97. Rossier C, Patterson J, Kolakofsky D (1986) La Crosse virus small genome mRNA is made in the cytoplasm. J Virol 58:647–650PubMedGoogle Scholar
  98. Rudolph MG, Kraus I, Dickmanns A, Eickmann M, Garten W, Ficner R (2003) Crystal structure of the Borna disease virus nucleoprotein. Structure 11:1219–1226PubMedCrossRefGoogle Scholar
  99. Schmaljohn CS, Nichol ST (2007) Bunyaviridae. In: Knipe D, Howley P (eds) Fields virology, vol 2. Lippincott Williams & Wilkins, Philadelphia, PA, pp 1741–1790Google Scholar
  100. Severson WE, Xu X, Jonsson CB (2001) cis-Acting signals in encapsidation of Hantaan virus S-segment viral genomic RNA by its N protein. J Virol 75:2646–2652PubMedCrossRefGoogle Scholar
  101. Severson W, Xu X, Kuhn M, Senutovitch N, Thokala M, Ferron F, Longhi S, Canard B, Jonsson CB (2005) Essential amino acids of the Hantaan virus N protein in its interaction with RNA. J Virol 79:10032–10039PubMedCrossRefGoogle Scholar
  102. Sherman MB, Freiberg AN, Holbrook MR, Watowich SJ (2009) Single-particle cryo-electron microscopy of Rift Valley fever virus. Virology 387:11–15PubMedCrossRefGoogle Scholar
  103. Shi X, Kohl A, Li P, Elliott RM (2007) Role of the cytoplasmic tail domains of Bunyamwera orthobunyavirus glycoproteins Gn and Gc in virus assembly and morphogenesis. J Virol 81:10151–10160PubMedCrossRefGoogle Scholar
  104. Simons JF, Pettersson RF (1991) Host-derived 5′ ends and overlapping complementary 3′ ends of the two mRNAs transcribed from the ambisense S segment of Uukuniemi virus. J Virol 65:4741–4748PubMedGoogle Scholar
  105. Snippe M, Borst JW, Goldbach R, Kormelink R (2005) The use of fluorescence microscopy to visualise homotypic interactions of tomato spotted wilt virus nucleocapsid protein in living cells. J Virol Methods 125:15–22PubMedCrossRefGoogle Scholar
  106. Snippe M, Willem Borst J, Goldbach R, Kormelink R (2007) Tomato spotted wilt virus Gc and N proteins interact in vivo. Virology 357:115–123PubMedCrossRefGoogle Scholar
  107. Tawar RG, Duquerroy S, Vonrhein C, Varela PF, Damier-Piolle L, Castagne N, MacLellan K, Bedouelle H, Bricogne G, Bhella D, Eleouet JF, Rey FA (2009) Crystal structure of a nucleocapsid-like nucleoprotein-RNA complex of respiratory syncytial virus. Science 326:1279–1283PubMedCrossRefGoogle Scholar
  108. Tischler ND, Gonzalez A, Perez-Acle T, Rosemblatt M, Valenzuela PD (2005) Hantavirus Gc glycoprotein: evidence for a class II fusion protein. J Gen Virol 86:2937–2947PubMedCrossRefGoogle Scholar
  109. Uhrig JF, Soellick TR, Minke CJ, Philipp C, Kellmann JW, Schreier PH (1999) Homotypic interaction and multimerization of nucleocapsid protein of tomato spotted wilt Tospovirus: identification and characterization of two interacting domains. Proc Natl Acad Sci USA 96:55–60PubMedCrossRefGoogle Scholar
  110. Vialat P, Bouloy M (1992) Germiston virus transcriptase requires active 40 S ribosomal subunits and utilizes capped cellular RNAs. J Virol 66:685–693PubMedGoogle Scholar
  111. Walter CT, Barr JN (2010) Bunyamwera virus can repair both insertions and deletions during RNA replication. RNA 16:1138–1145PubMedCrossRefGoogle Scholar
  112. Walter CT, Bento DF, Alonso AG, Barr JN (2011) Amino acid changes within the Bunyamwera virus nucleocapsid protein differentially affect the mRNA transcription and RNA replication activities of assembled ribonucleoprotein templates. J Gen Virol 92:80–84PubMedCrossRefGoogle Scholar
  113. Wang GJ, Hewlett M, Chiu W (1991) Structural variation of La Crosse virions under different chemical and physical conditions. Virology 184:455–459PubMedCrossRefGoogle Scholar
  114. Weber F, Dunn EF, Bridgen A, Elliott RM (2001) The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281:67–74PubMedCrossRefGoogle Scholar
  115. Xu X, Severson W, Villegas N, Schmaljohn CS, Jonsson CB (2002) The RNA binding domain of the Hantaan virus N protein maps to a central, conserved region. J Virol 76:3301–3308PubMedCrossRefGoogle Scholar
  116. Ye Q, Krug RM, Tao YJ (2006) The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature 444:1078–1082PubMedCrossRefGoogle Scholar
  117. Yuan P, Bartlam M, Lou Z, Chen S, Zhou J, He X, Lv Z, Ge R, Li X, Deng T, Fodor E, Rao Z, Liu Y (2009) Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature 458:909–913PubMedCrossRefGoogle Scholar
  118. Zamoto-Niikura A, Terasaki K, Ikegami T, Peters CJ, Makino S (2009) Rift Valley fever virus L protein forms a biologically active oligomer. J Virol 83:12779–12789PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Cell BiologyRice UniversityHoustonUSA

Personalised recommendations