FGF21 as a Therapeutic Reagent

  • Yang Zhao
  • James D. Dunbar
  • Alexei KharitonenkovEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 728)


The prevalence of obesity and diabetes has been dramatically increasing during the last decade suggesting a greater patient need for more efficacious and safer drugs. Large molecule therapy has played an important role in diabetes since the discovery of insulin. This legacy was continued upon the introduction of Humulin (first recombinant insulin), Humalog (first engineered insulin) and Byetta (first incretin mimetic). Several other protein therapeutics, such as leptin, adiponectin, bone morphogenic protein-9 and others, are currently in or considered for therapeutic development. Among them, FGF21 is one of the most promising candidates given its outstanding pharmacologic benefits for nearly each and every abnormality of a metabolic disease and lack of apparent side effects in a variety of animal models. Thus, FGF21 represents a novel and appealing therapeutic reagent for Type 2 diabetes mellitus, obesity, dyslipidemia, cardiovascular and fatty liver diseases. The in vitro biology, genetic animal models and in vivo pharmacology of FGF21 will be discussed in this chapter.


FGF21 Level FGF21 Expression INS1E Cell Human FGF21 Reduce Plasma Glucose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gospodarowicz D. Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 1974; 249(453):123–127.PubMedCrossRefGoogle Scholar
  2. 2.
    Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001; 2(3):REVIEWS3005.Google Scholar
  3. 3.
    Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16(2):139–149.PubMedCrossRefGoogle Scholar
  4. 4.
    Schlessinger J, Plotnikov AN, Ibrahimi OA et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol Cell 2000; 6(3):743–750.PubMedCrossRefGoogle Scholar
  5. 5.
    Orr-Urtreger A, Bedford MT, Burakova T et al. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev Biol 1993; 158(2):475–486.PubMedCrossRefGoogle Scholar
  6. 6.
    Plotnikov AN, Hubbard SR, Schlessinger J et al. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 2000; 101(4):413–424.PubMedCrossRefGoogle Scholar
  7. 7.
    Plotnikov AN, Schlessinger J, Hubbard SR et al. Structural basis for FGF receptor dimerization and activation. Cell 1999; 98(5):641–650.PubMedCrossRefGoogle Scholar
  8. 8.
    Kouhara H, Hadari YR, Spivak-Kroizman T et al. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997; 89(5):693–702.PubMedCrossRefGoogle Scholar
  9. 9.
    Hadari YR, Gotoh N, Kouhara H et al. Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc Natl Acad Sci USA 2001; 98(15):8578–8583.PubMedCrossRefGoogle Scholar
  10. 10.
    Wong A, Lamothe B, Lee A et al. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Natl Acad Sci USA 2002; 99(10):6684–6689.PubMedCrossRefGoogle Scholar
  11. 11.
    Lax I, Wong A, Lamothe B et al. The docking protein FRS2alpha controls a MAP kinase-mediated negative feedback mechanism for signaling by FGF receptors. Mol Cell 2002; 10(4):709–719.PubMedCrossRefGoogle Scholar
  12. 12.
    Mohammadi M, Honegger AM, Rotin D et al. A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 1991; 11(10):5068–5078.PubMedGoogle Scholar
  13. 13.
    Deng CX, Wynshaw-Boris A, Shen MM et al. Murine FGFR-1 is required for early postimplantation growth and axial organization. Genes Dev 1994; 8(24):3045–3057.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamaguchi TP, Harpal K, Henkemeyer M et al. fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994; 8(24):3032–3044.PubMedCrossRefGoogle Scholar
  15. 15.
    Partanen J, Schwartz L, Rossant J. Opposite phenotypes of hypomorphic and Y766 phosphorylation site mutations reveal a function for Fgfr1 in anteroposterior patterning of mouse embryos. Genes Dev 1998; 12(15):2332–2344.PubMedCrossRefGoogle Scholar
  16. 16.
    Xu X, Weinstein M, Li C et al. Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development 1998; 125(4):753–765.PubMedGoogle Scholar
  17. 17.
    De Moerlooze L, Spencer-Dene B, Revest JM et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000; 127(3):483–492.PubMedGoogle Scholar
  18. 18.
    Eswarakumar VP, Monsonego-Ornan E, Pines M et al. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002; 129(16):3783–3793.PubMedGoogle Scholar
  19. 19.
    Deng C, Wynshaw-Boris A, Zhou F et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996; 84(6):911–921.PubMedCrossRefGoogle Scholar
  20. 20.
    Colvin JS, Bohne BA, Harding GW et al. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nat Genet 1996; 12(4):390–397.PubMedCrossRefGoogle Scholar
  21. 21.
    Weinstein M, Xu X, Ohyama K et al. FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998; 125(18):3615–3623.PubMedGoogle Scholar
  22. 22.
    Dode C, Hardelin JP. Kallmann syndrome: fibroblast growth factor signaling insufficiency? J Mol Med 2004; 82(11):725–734.PubMedCrossRefGoogle Scholar
  23. 23.
    Macdonald D, Aguiar RC, Mason PJ et al. A new myeloproliferative disorder associated with chromosomal translocations involving 8p11: a review. Leukemia 1995; 9(10):1628–1630.PubMedGoogle Scholar
  24. 24.
    Roumiantsev S, Krause DS, Neumann CA et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell 2004; 5(3):287–298.PubMedCrossRefGoogle Scholar
  25. 25.
    Demiroglu A, Steer EJ, Heath C et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood 2001; 98(13):3778–3783.PubMedCrossRefGoogle Scholar
  26. 26.
    Itoh N, Ornitz DM. Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 2008; 237(1):18–27.PubMedCrossRefGoogle Scholar
  27. 27.
    Mohammadi M, Olsen SK, Goetz R. A protein canyon in the FGF-FGF receptor dimer selects from an a la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 2005; 15(5):506–516.PubMedCrossRefGoogle Scholar
  28. 28.
    Moscatelli D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J Cell Physiol 1987; 131(1):123–130.PubMedCrossRefGoogle Scholar
  29. 29.
    Flaumenhaft R, Moscatelli D, Rifkin DB. Heparin and heparan sulfate increase the radius of diffusion and action of basic fibroblast growth factor. J Cell Biol 1990; 111(4):1651–1659.PubMedCrossRefGoogle Scholar
  30. 30.
    Kharitonenkov A, Shiyanova TL, Koester A et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115(6):1627–1635.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimada T, Mizutani S, Muto T et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA 2001; 98(11):6500–6505.PubMedCrossRefGoogle Scholar
  32. 32.
    Lundåsen T, Gälman C, Angelin B et al. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J Intern Med 2006; 260(6):530–536.PubMedCrossRefGoogle Scholar
  33. 33.
    Ogawa Y, Kurosu H, Yamamoto M et al. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007; 104(18):7432–7437.PubMedCrossRefGoogle Scholar
  34. 34.
    Urakawa I, Yamazaki Y, Shimada T et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006; 444(7120):770–774.PubMedCrossRefGoogle Scholar
  35. 35.
    Bhushan A, Itoh N, Kato S et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development 2001; 128(24):5109–5117.PubMedGoogle Scholar
  36. 36.
    Ohuchi H, Hori Y, Yamasaki M et al. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 2000; 277(3):643–649.PubMedCrossRefGoogle Scholar
  37. 37.
    Konishi M, Mikami T, Yamasaki M et al. Fibroblast growth factor-16 is a growth factor for embryonic brown adipocytes. J Biol Chem 2000; 275(16):12119–12122.CrossRefGoogle Scholar
  38. 38.
    Sun HD, Malabunga M, Tonra JR et al. Monoclonal antibody antagonists of hypothalamic FGFR1 cause potent but reversible hypophagia and weight loss in rodents and monkeys. Am J Physiol Endocrinol Metab 2007; 292(3):E964–E976.PubMedCrossRefGoogle Scholar
  39. 39.
    Hart AW, Baeza N, Apelqvist A et al. Attenuation of FGF signalling in mouse beta-cells leads to diabetes. Nature 2000; 408(6814):864–868.PubMedCrossRefGoogle Scholar
  40. 40.
    Revest JM, Suniara RK, Kerr K et al. Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 2001; 167(4):1954–1961.PubMedGoogle Scholar
  41. 41.
    Celli G, LaRochelle WJ, Mackem S et al. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 1998; 17(6):1642–1655.PubMedCrossRefGoogle Scholar
  42. 42.
    Elghazi L, Cras-Méneur C, Czernichow P et al. Role for FGFR2IIIb-mediated signals in controlling pancreatic endocrine progenitor cell proliferation. Proc Natl Acad Sci USA 2002; 99(6):3884–3889.PubMedCrossRefGoogle Scholar
  43. 43.
    Yu C, Wang F, Kan M et al. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000; 275(20):15482–15489.PubMedCrossRefGoogle Scholar
  44. 44.
    Huang X, Yang C, Luo Y et al. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes 2007; 56(10):2501–2510.PubMedCrossRefGoogle Scholar
  45. 45.
    Shin DJ, Osborne TF. FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J Biol Chem 2009; 284(17):11110–11120.PubMedCrossRefGoogle Scholar
  46. 46.
    Goetz R, Beenken A, Ibrahimi OA et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007; 27(9):3417–3428.PubMedCrossRefGoogle Scholar
  47. 47.
    Harmer NJ, Pellegrini L, Chirgadze D et al. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry 2004; 43(3):629–640.PubMedCrossRefGoogle Scholar
  48. 48.
    Ito S, Kinoshita S, Shiraishi N et al. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 2000; 98(1–2):115–119.PubMedCrossRefGoogle Scholar
  49. 49.
    Tsujikawa H, Kurotaki Y, Fujimori T et al. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003; 17(12):2393–2403.PubMedCrossRefGoogle Scholar
  50. 50.
    Holt JA, Luo G, Billin AN et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003; 17(13):1581–1591.PubMedCrossRefGoogle Scholar
  51. 51.
    Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2005; 2(4):217–225.PubMedCrossRefGoogle Scholar
  52. 52.
    Tomlinson E, Fu L, John L et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002; 143(5):1741–1747.PubMedCrossRefGoogle Scholar
  53. 53.
    Ito S, Fujimori T, Furuya A et al. Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho. J Clin Invest 2005; 115(8):2202–2208.PubMedCrossRefGoogle Scholar
  54. 54.
    Nishimura T, Nakatake Y, Konishi M et al. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492(1):203–206.PubMedGoogle Scholar
  55. 55.
    Ibrahimi OA, Zhang F, Eliseenkova AV et al. Biochemical analysis of pathogenic ligand-dependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum Mol Genet 2004; 13(19):2313–2324.PubMedCrossRefGoogle Scholar
  56. 56.
    Kharitonenkov A, Dunbar JD, Bina HA et al. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol 2008; 215(1):1–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Suzuki M, Uehara Y, Motomura-Matsuzaka K et al. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008; 22(4):1006–1014.PubMedCrossRefGoogle Scholar
  58. 58.
    Kurosu H, Choi M, Ogawa Y et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007; 282(37):26687–26695.PubMedCrossRefGoogle Scholar
  59. 59.
    Murer H, Hernando N, Forster I et al. Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 2000; 80(4):1373–1409.PubMedGoogle Scholar
  60. 60.
    Riminucci M, Collins MT, Fedarko NS et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest 2003; 112(5):683–692.PubMedGoogle Scholar
  61. 61.
    Wikvall K. Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (review). Int J Mol Med 2001; 7(2):201–209.PubMedGoogle Scholar
  62. 62.
    Shimada T, Kakitani M, Yamazaki Y et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 2004; 113(4):561–568.PubMedGoogle Scholar
  63. 63.
    Sitara D, Razzaque MS, Hesse M et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 2004; 23(7):421–432.PubMedCrossRefGoogle Scholar
  64. 64.
    Yoshida T, Fujimori T, Nabeshima Y. Mediation of unusually high concentrations of 1, 25-dihydroxyvitamin D in homozygous klotho mutant mice by increased expression of renal 1alpha-hydroxylase gene. Endocrinology 2002; 143(2):683–689.PubMedCrossRefGoogle Scholar
  65. 65.
    Inagaki T, Dutchak P, Zhao G et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007; 5(6):415–425.PubMedCrossRefGoogle Scholar
  66. 66.
    Arner P, Pettersson A, Mitchell PJ et al. FGF21 attenuates lipolysis in human adipocytes—a possible link to improved insulin sensitivity. FEBS Lett 2008; 582(12):1725–1730.PubMedCrossRefGoogle Scholar
  67. 67.
    Badman MK, Pissios P, Kennedy AR et al. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007; 5(6):426–437.PubMedCrossRefGoogle Scholar
  68. 68.
    Moyers JS, Shiyanova TL, Mehrbod F et al. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol 2007; 210(1):1–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Muise ES, Azzolina B, Kuo DW et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 2008; 74(2):403–412.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 2008; 28(1):188–200.PubMedCrossRefGoogle Scholar
  71. 71.
    Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008; 22(1):37–44.PubMedCrossRefGoogle Scholar
  72. 72.
    Izumiya Y, Bina HA, Ouchi N et al. FGF21 is an Akt-regulated myokine. FEBS Lett 2008; 582(27): 3805–3810.PubMedCrossRefGoogle Scholar
  73. 73.
    Izumiya Y, Hopkins T, Morris C et al. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 2008; 7(2):159–172.PubMedCrossRefGoogle Scholar
  74. 74.
    Lundåsen T, Hunt MC, Nilsson LM et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 2007; 360(2):437–440.PubMedCrossRefGoogle Scholar
  75. 75.
    Wente W, Efanov AM, Brenner M et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006; 55(9):2470–2478.PubMedCrossRefGoogle Scholar
  76. 76.
    Leibowitz G, Uçkaya G, Oprescu AI et al. Glucose-regulated proinsulin gene expression is required for adequate insulin production during chronic glucose exposure. Endocrinology 2002; 143(9):3214–3220.PubMedCrossRefGoogle Scholar
  77. 77.
    Bollheimer LC, Skelly RH, Chester MW et al. Chronic exposure to free fatty acid reduces pancreatic beta cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 1998; 101(5):1094–1101.PubMedCrossRefGoogle Scholar
  78. 78.
    Inagaki T, Lin VY, Goetz R et al. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008; 8(1):77–83.PubMedCrossRefGoogle Scholar
  79. 79.
    Coskun T, Bina HA, Schneider MA et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008; 149(12):6018–6027.PubMedCrossRefGoogle Scholar
  80. 80.
    Xu J, Lloyd DJ, Hale C et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58(1):250–259.PubMedCrossRefGoogle Scholar
  81. 81.
    Berglund ED, Li CY, Bina HA et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 2009; 150(9):4084–4093.PubMedCrossRefGoogle Scholar
  82. 82.
    Huang X, Yu C, Jin C et al. Forced expression of hepatocyte-specific fibroblast growth factor 21 delays initiation of chemically induced hepatocarcinogenesis. Mol Carcinog 2006; 45(12):934–942.PubMedCrossRefGoogle Scholar
  83. 83.
    Xu J, Stanislaus S, Chinookoswong N et al. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin resistant mouse models—Association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009.Google Scholar
  84. 84.
    Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem 2009; 284(15):10023–10033.PubMedCrossRefGoogle Scholar
  85. 85.
    Wu X, Lemon B, Li X et al. C-terminal tail of FGF19 determines its specificity toward Klotho coreceptors. J Biol Chem 2008; 283(48):33304–33309.PubMedCrossRefGoogle Scholar
  86. 86.
    Micanovic R, Raches DW, Dunbar JD et al. Different roles of N-and C-termini in the functional activity of FGF21. J Cell Physiol 2009; 219(2):227–234.PubMedCrossRefGoogle Scholar
  87. 87.
    Yie J, Hecht R, Patel J et al. FGF21 N-and C-termini play different roles in receptor interaction and activation. FEBS Lett 2009; 583(1):19–24.PubMedCrossRefGoogle Scholar
  88. 88.
    Yamazaki Y, Tamada T, Kasai N et al. Anti-FGF23 neutralizing antibodies show the physiological role and structural features of FGF23. J Bone Miner Res 2008; 23(9):1509–1518.PubMedCrossRefGoogle Scholar
  89. 89.
    Choi M, Moschetta A, Bookout AL et al. Identification of a hormonal basis for gallbladder filling. Nat Med 2006; 12(11):1253–1255.PubMedCrossRefGoogle Scholar
  90. 90.
    Nicholes K, Guillet S, Tomlinson E et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 2002; 160(6):2295–2307.PubMedCrossRefGoogle Scholar
  91. 91.
    Hashimoto T, Cook WS, Qi C et al. Defect in peroxisome proliferator-activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J Biol Chem 2000; 275(37):28918–28928.PubMedCrossRefGoogle Scholar
  92. 92.
    Kersten S, Seydoux J, Peters JM et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999; 103(11):1489–1498.PubMedCrossRefGoogle Scholar
  93. 93.
    Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 1999; 96(13):7473–7478.PubMedCrossRefGoogle Scholar
  94. 94.
    Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides 2007; 28(12):2382–2386.PubMedCrossRefGoogle Scholar
  95. 95.
    Uebanso T, Taketani Y, Fukaya M et al. Hypocaloric high-protein diet improves fatty liver and hypertriglyceridemia in sucrose-fed obese rats via two pathways. Am J Physiol Endocrinol Metab 2009; 297(1):E76–E84.PubMedCrossRefGoogle Scholar
  96. 96.
    Palou M, Priego T, Sánchez J et al. Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflugers Arch 2008; 456(5):825–836.PubMedCrossRefGoogle Scholar
  97. 97.
    Badman MK, Koester A, Flier JS et al. Fibroblast Growth Factor 21-Deficient Mice Demonstrate Impaired Adaptation to Ketosis. Endocrinology 2009; 150(11):Epub as doi:10.1210/en.2009-0523.Google Scholar
  98. 98.
    Schäfer SA, Hansen BC, Völkl A et al. Biochemical and morphological effects of K-111, a peroxisome proliferator-activated receptor (PPAR)alpha activator, in nonhuman primates. Biochem Pharmacol 2004; 68(2):239–251.PubMedCrossRefGoogle Scholar
  99. 99.
    Angeloni SV, Glynn N, Ambrosini G et al. Characterization of the rhesus monkey ghrelin gene and factors influencing ghrelin gene expression and fasting plasma levels. Endocrinology 2004; 145(5):2197–2205.PubMedCrossRefGoogle Scholar
  100. 100.
    Oliver WR Jr, Shenk JL, Snaith MR et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 2001; 98(9):5306–5311.PubMedCrossRefGoogle Scholar
  101. 101.
    Walston J, Lowe A, Silver K et al. The beta3-adrenergic receptor in the obesity and diabetes prone rhesus monkey is very similar to human and contains arginine at codon 64. Gene 1997; 188(2):207–213.PubMedCrossRefGoogle Scholar
  102. 102.
    Kharitonenkov A, Wroblewski VJ, Koester A et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148(2):774–781.PubMedCrossRefGoogle Scholar
  103. 103.
    Boden G, Zhang M. Recent findings concerning thiazolidinediones in the treatment of diabetes. Expert Opin Investig Drugs 2006; 15(3):243–250.PubMedCrossRefGoogle Scholar
  104. 104.
    Cohen P, Miyazaki M, Socci ND et al. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002; 297(5579):240–243.PubMedCrossRefGoogle Scholar
  105. 105.
    Handschin C, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1 coactivators, energy homeostasis and metabolism. Endocr Rev 2006; 27(7):728–735.PubMedGoogle Scholar
  106. 106.
    Gälman C, Lundåsen T, Kharitonenkov A et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008; 8(2):169–74.PubMedCrossRefGoogle Scholar
  107. 107.
    Bjursell M, Gerdin AK, Lelliott CJ et al. Acutely reduced locomotor activity is a major contributor to Western diet-induced obesity in mice. Am J Physiol Endocrinol Metab 2008; 294(2):E251–E260.PubMedCrossRefGoogle Scholar
  108. 108.
    Winegar DA, Brown PJ, Wilkison WO et al. Effects of fenofibrate on lipid parameters in obese rhesus monkeys. J Lipid Res 2001; 42(10):1543–1551.PubMedGoogle Scholar
  109. 109.
    Guerre-Millo M, Gervois P, Raspé E et al. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem 2000; 275(22):16638–16642.PubMedCrossRefGoogle Scholar
  110. 110.
    Butler AE, Janson J, Bonner-Weir S et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52(1):102–110.PubMedCrossRefGoogle Scholar
  111. 111.
    Zhang X, Yeung DC, Karpisek M et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57(5):1246–1253.PubMedCrossRefGoogle Scholar
  112. 112.
    Hojman P, Pedersen M, Nielsen AR et al. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 2009; 58(12):2797–801.PubMedCrossRefGoogle Scholar
  113. 113.
    Li L, Yang G, Ning H et al. Plasma FGF-21 levels in type 2 diabetic patients with ketosis. Diabetes Res Clin Pract 2008; 82(2):209–213.PubMedCrossRefGoogle Scholar
  114. 114.
    Chen WW, Li L, Yang GY et al. Circulating FGF-21 levels in normal subjects and in newly diagnose patients with Type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2008; 116(1):65–68.PubMedCrossRefGoogle Scholar
  115. 115.
    Durovcová V, Marek J, Hána V et al. Plasma concentrations of fibroblast growth factors 21 and 19 in patients with Cushing’s syndrome. Physiol Res 2010; 59(3):415–22.PubMedGoogle Scholar
  116. 116.
    Stein S, Bachmann A, Lössner U et al. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care 2009; 32(1):126–128.PubMedCrossRefGoogle Scholar
  117. 117.
    Dostálová I, Kaválková P, Haluzíková D et al. Plasma concentrations of fibroblast growth factors 19 and 21 in patients with anorexia nervosa. J Clin Endocrinol Metab 2008; 93(9):3627–3632.PubMedCrossRefGoogle Scholar
  118. 118.
    Bartak V, Vybiral S, Papezova H et al. Basal and exercise-induced sympathetic nervous activity and lipolysis in adipose tissue of patients with anorexia nervosa. Eur J Clin Invest 2004; 34(5):371–377.PubMedCrossRefGoogle Scholar
  119. 119.
    Xu A, Tso AW, Cheung BM et al. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 2007; 115(12):1537–1543.PubMedCrossRefGoogle Scholar
  120. 120.
    Mraz M, Bartlova M, Lacinova Z et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol (Oxf) 2009; 71(3):369–375.CrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Yang Zhao
    • 1
  • James D. Dunbar
    • 1
  • Alexei Kharitonenkov
    • 1
    Email author
  1. 1.Eli Lilly and CompanyLilly Corporate CenterIndianapolisUSA

Personalised recommendations