Advertisement

Internet Based Service Networks

  • LiYing Cui
  • Soundar Kumara
  • Réka Albert
Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 58)

Abstract

This chapter focuses on services networks. We review the important aspects of services (flow patterns, semantic issues, Quality of Service (QoS) and user preferences), as well as service composition techniques, network metrics and models. The Concept-Service (CS) network matrix is introduced. The CS network dynamics and optimization based service composition are the original contributions of this chapter based on our years of research on this topic.

Keywords

Service Composition Concept Service Usability Score Service Composition Problem Service Execution Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W3C, Web Services Description Language (WSDL) Version 2.0, W3C Working Draft, http://www.w3.org/TR/wsdl20, 2003.
  2. 2.
  3. 3.
  4. 4.
    Y. Li, J. P. Huai, H. Sun et al., Pass: An approach to personalized automated service composition, pp. 283-290, 2008.Google Scholar
  5. 5.
    B. Raman, S. Agarwal, Y. Chen et al., The SAHARA model for service composition across multiple providers, Pervasive Computing, pp. 585-597, 2002.Google Scholar
  6. 6.
    L. Zeng, B. Benatallah, A. H. H. Ngu et al., QoS-aware middleware for web services composition, IEEE Transactions on Software Engineering, pp. 311-327, 2004.Google Scholar
  7. 7.
    K. S. M. Chan, J. Bishop, and L. Baresi, Survey and comparison of planning techniques for web services composition, University of Pretoria2007. c ISMED, vol. 209, 2007.Google Scholar
  8. 8.
    T. Vossen, M. Ball, A. Lotem et al., On the use of integer programming models in AI planning, in Proc. IJCAI’1999, pp.304-309, 1999.Google Scholar
  9. 9.
    T. Vossen, M. Ball, A. Lotem et al., Applying integer programming to AI planning, The Knowledge Engineering Review, vol. 15, no. 1, pp. 85-100, 2000.Google Scholar
  10. 10.
    H. Kautz, and J. P. Walser, State-space planning by integer optimization, AAAI ’99/IAAI ’99 Proceedings of the sixteenth national conference on Artificial intelligence and the eleventh Innovative applications of artificial intelligence conference innovative applications of artificial intelligence American Association for Artificial Intelligence Menlo Park, CA, USA, pp. 526-533, 1999.Google Scholar
  11. 11.
    A. Gao, D. Yang, S. Tang et al., Web service composition using integer programming-based models, IEEE International Conference on e-Business Engineering, 2005. pp. 603-609, 2005.Google Scholar
  12. 12.
    J. Rao, and P. Kngas, Application of linear logic to web service composition,In Proceedings of ICWS’2003. pp.1 3, 2003Google Scholar
  13. 13.
    E. Sirin, J. Hendler, and B. Parsia, Semi-automatic composition of web services using semantic descriptions, In Proceedings of WSMAI’2003, pp. 17-24, 2003.Google Scholar
  14. 14.
    L. Xiao, and L. Zhang, Automatic mapping from XML documents to ontologies, in Proc. CIT’2004, pp. 321-325, 2004.Google Scholar
  15. 15.
    S. Huang, H. Chen, and L. J. Zhang, Progressive auction based resource allocation in service-oriented architecture,in Proc. IEEE SCC’2005, pp.85-92, 2005.Google Scholar
  16. 16.
    S. Y. Hwang, E. P. Lim, C. H. Lee et al., Dynamic web service selection for reliable web service composition, IEEE transactions on services computing, pp. 104-116, 2008.Google Scholar
  17. 17.
    G. Pacifici, M. Spreitzer, A. N. Tantawi et al., Performance management for cluster-based web services, IEEE Journal on Selected Areas in Communications, vol. 23, no. 12, pp. 2333-2343, 2005.Google Scholar
  18. 18.
    S. C. Oh, H. Kil, D. Lee et al., Wsben: A web services discovery and composition benchmark, in Proc. ICWS’2006, pp. 239-248, 2006.Google Scholar
  19. 19.
    S. C. Oh, D. Lee, and S. R. T. Kumara, WSPR: An Effective and Scalable Web Service Composition Algorithm, International Journal of Web Services Research, Vol. 4, No. 1, pp. 1-22, 2007.Google Scholar
  20. 20.
    L. J. Zhang, S. Cheng, Y. M. Chee et al., Pattern recognition based adaptive categorization technique and solution for services selection, apscc, pp. 535-543, 2007.Google Scholar
  21. 21.
    S. C. Oh, D. Lee, and S. R. T. Kumara, Effective web service composition in diverse and large-scale service networks, IEEE transactions on services computing, pp. 15-32, 2008.Google Scholar
  22. 22.
    F. Montagut, and R. Molva, Bridging security and fault management within distributed workflow management systems, IEEE transactions on services computing, pp. 33-48, 2008.Google Scholar
  23. 23.
    H. Lufei, W. Shi, and V. Chaudhary, Adaptive Secure Access to Remote Services in Mobile Environments, IEEE transactions on services computing, pp. 49-61, 2008.Google Scholar
  24. 24.
    K. A. Phan, Z. Tari, and P. Bertok, Similarity-Based SOAP Multicast Protocol to Reduce Bandwith and Latency in Web Services, IEEE transactions on services computing, pp. 88-103, 2008.Google Scholar
  25. 25.
    J. Wei, L. Singaravelu, and C. Pu, A secure information flow architecture for web service platforms, IEEE transactions on services computing, pp. 75-87, 2008.Google Scholar
  26. 26.
    R. Albert, H. Jeong, and A. L. Barabsi, The diameter of the world wide web, Arxiv preprint cond-mat/9907038, 1999.Google Scholar
  27. 27.
    R. V. Engelen, Are web services scale free?, http://www.cs.fsu.edu/~engelen/powerlaw.html, 2005.
  28. 28.
    L. Y. Cui, S. Kumara, J. J. W. Yoo et al., Large-Scale Network Decomposition and Mathematical Programming Based Web Service Composition, IEEE Conference on Commerce and Enterprise Computing’2009, pp. 511-514, 2009.Google Scholar
  29. 29.
    L. Li, and I. Horrocks, A software framework for matchmaking based on semantic web technology, International Journal of Electronic Commerce, vol. 8, no. 4, pp. 39-60, 2004.Google Scholar
  30. 30.
    L. Y. Cui, S. Kumara, and R. Albert, Complex networks: an engineering view, Circuits and Systems Magazine, IEEE, vol. 10, no. 3, pp. 10-25, 2010.Google Scholar
  31. 31.
    R. Baggio, N. Scott, and C. cooper, Network science: A review focused on tourism, http://cdsweb.cern.ch/record/1245639, 2010.
  32. 32.
    H. P. Thadakamalla, U. N. Raghavan, and S. Kumara, Survivability of multiagent-based supply networks: A topological perspective, IEEE Intelligent Systems, pp. 24-31, 2004.Google Scholar
  33. 33.
    L. Y. Cui, S. R. T. Kumara, and D. Lee, Scenario Analysis of Web Service Composition based on Multi-criteria Mathematical Goal Programming, Service Science, vol. 3, no. 3, 2011.Google Scholar
  34. 34.
    J. L. Arthur, and A. Ravindran, PAGP, a partitioning algorithm for (linear) goal programming problems, ACM Transactions on Mathematical Software (TOMS), vol. 6, no. 3, pp. 378-386, 1980.Google Scholar
  35. 35.
    S. K. Moon, T. W. Simposon, L. Y. Cui et al., A Service based Platform Design Method for Customized Products, Proceedings of CIRP Integrated Production and Service Systems conference’2010, pp. 3-10, 2010.Google Scholar
  36. 36.
    D. L. McGuinness, F. Van Harmelen et al., OWL web ontology language overview, W3C recommendation, http://www.w3.org/TR/owl-features/,2004.
  37. 37.
    A. L. Barabsi and R. Albert, Emergence of Scaling in Random Networks, Science, vol.286 no. 5439, pp. 509-512, 1999.Google Scholar
  38. 38.
    P. Erdöys and A. Rényi, Random Graphs, Publ. Math. Inst. Hung. Acad.Sci. vol. 5, No.17, 1960.Google Scholar
  39. 39.
    D. J. Watts and S. H. Strogatz1, Collective Dynamics of ”Small-world” Networks, Nature, 393, pp. 440-442, 1998Google Scholar
  40. 40.
    R. Xu and D. Wunsch, Survey of Clustering Algorithms Neural Networks, IEEE Transactions on, vol. 16, no.3, pp. 645-678, 2005.Google Scholar
  41. 41.
    L. Y. Cui, S. Kumara and T. Yao, Service Composition using Dynamic Programming and Concept Service (CS) Network, Proceedings of IERC 2011, May Reno, Nevada, USA., 2011.Google Scholar
  42. 42.
    A. Gao, D. Yang et al.,Web Service Composition Using Markov Decision Processes. Advances in Web-Age Information Management, Springer Berlin, vol.3739/2005, pp. 308-319, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity ParkUSA

Personalised recommendations