Skip to main content

Geometric Properties of Inverse Polynomial Images

  • Conference paper
  • First Online:
Book cover Approximation Theory XIII: San Antonio 2010

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 13))

Abstract

Given a polynomial \({\mathcal{T}}_{n}\) of degree n, consider the inverse image of \(\mathbb{R}\) and [−1,1], denoted by \({\mathcal{T}}_{n}^{-1}(\mathbb{R})\) and \({\mathcal{T}}_{n}^{-1}([-1,1])\), respectively. It is well known that \({\mathcal{T}}_{n}^{-1}(\mathbb{R})\) consists of n analytic Jordan arcs moving from to . In this paper, we give a necessary and sufficient condition such that (1)\({\mathcal{T}}_{n}^{-1}([-1,1])\) consists of ν analytic Jordan arcs and (2)\({\mathcal{T}}_{n}^{-1}([-1,1])\) is connected, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogatyrëv, A.B., On the efficient computation of Chebyshev polynomials for several intervals, Sb. Math. 190, 1571–1605 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  2. Kamo, S.O. and Borodin, P.A., Chebyshev polynomials for Julia sets, Moscow Univ. Math. Bull. 49, 44–45 (1994).

    MathSciNet  MATH  Google Scholar 

  3. Fischer, B., Chebyshev polynomials for disjoint compact sets, Constr. Approx. 8, 309–329 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. Fischer, B. and Peherstorfer, F., Chebyshev approximation via polynomial mappings and the convergence behaviour of Krylov subspace methods, Electron. Trans. Numer. Anal. 12, 205–215 (electronic) (2001).

    Google Scholar 

  5. Pakovich, F., Elliptic polynomials, Russian Math. Surveys 50, 1292–1294 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. Pakovich, F., Combinatoire des arbres planaires et arithmétique des courbes hyperelliptiques, Ann. Inst. Fourier (Grenoble) 48, 323–351 (1998).

    Google Scholar 

  7. Pakovich, F., On trees that cover chains or stars, Fundam. Prikl. Mat. 13, 207–215 (2007).

    Google Scholar 

  8. Pakovich, F., On polynomials sharing preimages of compact sets, and related questions, Geom. Funct. Anal. 18, 163–183 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. Peherstorfer, F., Orthogonal and extremal polynomials on several intervals, J. Comput. Appl. Math. 48, 187–205 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  10. Peherstorfer, F., Minimal polynomials for compact sets of the complex plane, Constr. Approx. 12, 481–488 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. Peherstorfer, F., Inverse images of polynomial mappings and polynomials orthogonal on them, J. Comput. Appl. Math. 153, 371–385 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. Peherstorfer, F., Deformation of minimal polynomials and approximation of several intervals by an inverse polynomial mapping, J. Approx. Theory 111, 180–195 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. Peherstorfer, F. and Schiefermayr, K., Description of extremal polynomials on several intervals and their computation. I, II, Acta Math. Hungar. 83, 27–58, 59–83 (1999).

    Google Scholar 

  14. Peherstorfer, F. and Schiefermayr, K., Description of inverse polynomial images which consist of two Jordan arcs with the help of Jacobi’s elliptic functions, Comput. Methods Funct. Theory 4, 355–390 (2004).

    MathSciNet  MATH  Google Scholar 

  15. Peherstorfer, F. and Steinbauer, R., Orthogonal and L q -extremal polynomials on inverse images of polynomial mappings, J. Comput. Appl. Math. 127, 297–315 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. Schiefermayr, K., Inverse polynomial images which consists of two Jordan arcs – An algebraic solution, J. Approx. Theory 148, 148–157 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  17. Schiefermayr, K., Inverse polynomial images consisting of an interval and an arc, Comput. Methods Funct. Theory 9, 407–420 (2009).

    MathSciNet  MATH  Google Scholar 

  18. Sodin, M.L. and Yuditskiĭ, P.M., Algebraic solution of a problem of E.I.Zolotarev and N.I.Akhiezer on polynomials with smallest deviation from zero, J. Math. Sci. 76, 2486–2492 (1995).

    Google Scholar 

  19. Totik, V., Polynomial inverse images and polynomial inequalities, Acta Math. 187, 139–160 (2001).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Schiefermayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Schiefermayr, K. (2012). Geometric Properties of Inverse Polynomial Images. In: Neamtu, M., Schumaker, L. (eds) Approximation Theory XIII: San Antonio 2010. Springer Proceedings in Mathematics, vol 13. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0772-0_17

Download citation

Publish with us

Policies and ethics