Global Approaches for Facility Layout and VLSI Floorplanning

  • Miguel F. AnjosEmail author
  • Frauke Liers
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 166)


This chapter provides an overview of conic optimization models for facility layout and VLSI floorplanning problems. We focus on two classes of problems to which conic optimization approaches have been successfully applied, namely the single-row facility layout problem, and fixed-outline floorplanning in VLSI circuit design. For the former, a close connection to the cut polytope has been exploited in positive semidefinite and integer programming approaches. In particular, the semidefinite optimization approaches can provide global optimal solutions for instances with up to 40 facilities, and tight global bounds for instances with up to 100 facilities. For the floorplanning problem, a conic optimization model provided the first non-trivial lower bounds in the literature.


Valid Inequality Layout Problem Facility Layout Quadratic Assignment Problem Very Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support provided by the following institutions: The Alexander von Humboldt Foundation and the Natural Sciences and Engineering Research Council of Canada (first author), and the German Science Foundation (second author).


  1. 1.
    Adams, E.C.: A semidefinite programming model for the facility layout problem. Master’s thesis, University of Waterloo (2010)Google Scholar
  2. 2.
    Amaral, A.R.S.: On the exact solution of a facility layout problem. Eur. J. Oper. Res. 173(2), 508–518 (2006)CrossRefGoogle Scholar
  3. 3.
    Amaral, A.R.S.: An exact approach for the one-dimensional facility layout problem. Oper. Res. 56(4), 1026–1033 (2008)CrossRefGoogle Scholar
  4. 4.
    Amaral, A.R.S.: A new lower bound for the single row facility layout problem. Discrete Appl. Math. 157(1), 183–190 (2009)CrossRefGoogle Scholar
  5. 5.
    Amaral, A.R.S.: On the exact solution of a facility layout problem. Discr. Appl. Math. 157(1), 183–190 (2009)CrossRefGoogle Scholar
  6. 6.
    Amaral, A.R.S., Letchford, A.N.: A polyhedral approach to the single-row facility layout problem. Technical report, Department of Management Science, Lancaster University (March 2008)Google Scholar
  7. 7.
    Anjos, M.F., Kennings, A., Vannelli, A.: A semidefinite optimization approach for the single-row layout problem with unequal dimensions. Discrete Optim. 2(2), 113–122 (2005)CrossRefGoogle Scholar
  8. 8.
    Anjos, M.F., Vannelli, A.: Globally optimal solutions for large single-row facility layout problems. Technical report, University of Waterloo (2006)Google Scholar
  9. 9.
    Anjos, M.F., Vannelli, A.: A new mathematical-programming framework for facility-layout design. INFORMS J. Comp. 18(1), 111–118 (2006)CrossRefGoogle Scholar
  10. 10.
    Anjos, M.F., Vannelli, A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comp. 20(4), 611–617 (2008)CrossRefGoogle Scholar
  11. 11.
    Anjos, M.F., Yen, G.: Provably near-optimal solutions for very large single-row facility layout problems. Optim. Methods Softw. 24(4), 805–817 (2009)CrossRefGoogle Scholar
  12. 12.
    Barahona, F., Mahjoub, A.R.: On the cut polytope. Mathematical Programming 36, 157–173, 1986.CrossRefGoogle Scholar
  13. 13.
    Bernardi, S.: A three-stage mathematical-programming method for the multi-floor facility layout problem. Master’s thesis, University of Waterloo (2010)Google Scholar
  14. 14.
    Borchers, B.: CSDP, a C library for semidefinite programming. Optim. Methods Softw. 11/12(1-4), 613–623 (1999)Google Scholar
  15. 15.
    Buchheim, C., Liers, F., Oswald, M.: Speeding up IP-based algorithms for constrained quadratic 0-1 optimization. Mathematical Programming (Series B) 124(1-2), 513–535 (2010)Google Scholar
  16. 16.
    Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear ordering problem. INFORMS J. on Computing 2(1), 168–177 (2010)CrossRefGoogle Scholar
  17. 17.
    Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweenness variables. Mathematical Programming (Series C) 3(3), 261–280 (2011)Google Scholar
  18. 18.
    Castillo, I., Sim, T.: A spring-embedding approach for the facility layout problem. J. Oper. Res. Soc. 55, 73–81 (2004)CrossRefGoogle Scholar
  19. 19.
    Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: A comparison of MILP and MINLP optimixation methods. Computers and Chemical Engineering 30(1), 54–69 (2005)Google Scholar
  20. 20.
    Castillo, I., Westerlund, T.: An ε-accurate model for optimal unequal-area block layout design. Comput. Oper. Res. 32(3), 429–447 (2005)CrossRefGoogle Scholar
  21. 21.
    Çela, E.: The Quadratic Assignment Problem. In: Combinatorial Optimization, vol. 1. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  22. 22.
    Charon, I., Hudry, O.: An updated survey on the linear ordering problem for weighted or unweighted tournaments. Ann. Oper. Res. 175, 107–158 (2010)CrossRefGoogle Scholar
  23. 23.
    Christof, T., Oswald, M., Reinelt, G.: Consecutive ones and a betweenness problem in computational biology. In Proceedings of the 6th Conference on Integer Programming and Combinatorial Optimization, Springer-Verlag Lecture Notes in Computer Science 1412 (1998)Google Scholar
  24. 24.
    de Alvarenga, A.G., Negreiros-Gomes, F.J., Mestria, M.: Metaheuristic methods for a class of the facility layout problem. J. Intell. Manuf. 11, 421–430 (2000)CrossRefGoogle Scholar
  25. 25.
    De Simone, C.: The cut polytope and the boolean quadric polytope. Discrete Mathematics 79, 71–75 (1989)CrossRefGoogle Scholar
  26. 26.
    Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, vol. 15 of Algorithms and Combinatorics. Springer-Verlag, Berlin (1997)Google Scholar
  27. 27.
    Díaz, J., Petit, J., Serna, M.: A survey on graph layout problems. ACM Computing Surveys 34, 313–356 (2002)CrossRefGoogle Scholar
  28. 28.
    Foulds, L.R.: Graph Theory Applications. Springer-Verlag, New York (1991)Google Scholar
  29. 29.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach. 42(6), 1115–1145 (1995)Google Scholar
  30. 30.
    Grötschel, M., Jünger, M., Reinelt, G.: Facets of the linear ordering polytope. Mathematical Programming 33, 43–60 (1985)CrossRefGoogle Scholar
  31. 31.
    Hall, K.M.: An r-dimensional quadratic placement algorithm. Management Sciences 17, 219–229 (1970)CrossRefGoogle Scholar
  32. 32.
    Hammer, P.L.: Some network flow problems solved with pseudo-boolean programming. Operations Research 13, 388–399 (1965)CrossRefGoogle Scholar
  33. 33.
    Helmberg, C., Kiwiel, K.C.: A spectral bundle method with bounds. Math. Program. 93(2, Ser. A), 173–194 (2002)Google Scholar
  34. 34.
    Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3), 673–696 (2000)CrossRefGoogle Scholar
  35. 35.
    Heragu, S.S.: Facilities Design. iUniverse, second edition (2006)Google Scholar
  36. 36.
    Heragu, S.S., Alfa, A.S.: Experimental analysis of simulated annealing based algorithms for the layout problem. European J. Oper. Res. 57(2), 190–202 (1992)CrossRefGoogle Scholar
  37. 37.
    Heragu, S.S., Kusiak, A.: Machine layout problem in flexible manufacturing systems. Oper. Res. 36(2), 258–268 (1988)CrossRefGoogle Scholar
  38. 38.
    Heragu, S.S., Kusiak, A.: Efficient models for the facility layout problem. European J. Oper. Res. 53, 1–13 (1991)CrossRefGoogle Scholar
  39. 39.
    Hungerländer, P., Rendl, F.: Semidefinite relaxations of ordering problems. Technical report, Alpen-Adria-Universität Klagenfurt (August 2010)Google Scholar
  40. 40.
    Jankovits, I.: An improved convex optimization model for two-dimensional facility layout. Master’s thesis, University of Waterloo (2006)Google Scholar
  41. 41.
    Karp, R.M., Held, M.: Finite-state processes and dynamic programming. SIAM J. Appl. Math. 15, 693–718 (1967)CrossRefGoogle Scholar
  42. 42.
    Kim, S., Kojima, M., Yamashita, M.: Second order cone programming relaxation of a positive semidefinite constraint. Optim. Methods Softw. 18(5), 535–541 (2003)CrossRefGoogle Scholar
  43. 43.
    Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)CrossRefGoogle Scholar
  44. 44.
    Kumar, K.R., Hadjinicola, G.C., Lin, T.: A heuristic procedure for the single-row facility layout problem. European J. Oper. Res. 87(1), 65–73 (1995)CrossRefGoogle Scholar
  45. 45.
    Lewis, M., Alidaee, B., Glover, F., Kochenberger, G.: A note on xQx as a modelling and solution framework for the linear ordering problem. International Journal of Operational Research 5(2), 152–162 (2009)CrossRefGoogle Scholar
  46. 46.
    Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of Hard Ising Spin Glass Problems by Branch-and-Cut, pp. 47–68. New Optimization Algorithms in Physics. Wiley-VCH (2004)Google Scholar
  47. 47.
    Liu, W., Vannelli, A.: Generating lower bounds for the linear arrangement problem. Discrete Appl. Math. 59(2), 137–151 (1995)CrossRefGoogle Scholar
  48. 48.
    Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1 optimization. SIAM J. Optim. 1, 166–190 (1991)CrossRefGoogle Scholar
  49. 49.
    Love, R.F., Wong, J.Y.: On solving a one-dimensional space allocation problem with integer programming. INFOR 14(2), 139–143 (1976)Google Scholar
  50. 50.
    Luo, C., Anjos, M.F., Vannelli, A.: A nonlinear optimization methodology for VLSI fixed-outline floorplanning. J. Comb. Optim. 16(4), 378–401 (2008)CrossRefGoogle Scholar
  51. 51.
    Mavridou, T.D., Pardalos, P.M.: Simulated annealing and genetic algorithms for the facility layout problem: a survey. Comput. Optim. Appl., 7(1), 111–126 (1997)CrossRefGoogle Scholar
  52. 52.
    Meller, R.D., Chen, W., Sherali, H.D.: Applying the sequence-pair representation to optimal facility layout designs. Oper. Res. Lett. 35(5), 651–659 (2007)CrossRefGoogle Scholar
  53. 53.
    Meller, R.D., Gau, K.Y.: The facility layout problem: recent and emerging trends and perspectives. Journal of Manufacturing Systems 15, 351–366 (1996)CrossRefGoogle Scholar
  54. 54.
    Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23(3-5), 117–127 (1998)CrossRefGoogle Scholar
  55. 55.
    Montreuil, B.: A modelling framework for integrating layout design and flow network design. In: White, J.A., Pence, I.W. (eds.) Progress in Material Handling and Logistics, vol. 2, pp. 95–116. Springer-Verlag (1991)Google Scholar
  56. 56.
    Murata, H., Fujiyoshi, K., Nakatake, S., Kajitani, Y.: VLSI module placement based on rectangle-packing by the sequence-pair. IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 15(12), 1518–1524 (1996)CrossRefGoogle Scholar
  57. 57.
    Murata, H., Kuh, E.S.: Sequence-pair based placement method for hard/soft/pre-placed modules. Proceedings of the International Symposium on Physical Design, pp. 167–172 (1998)Google Scholar
  58. 58.
    Picard, J.-C., Queyranne, M.: On the one-dimensional space allocation problem. Oper. Res. 29(2), 371–391 (1981)CrossRefGoogle Scholar
  59. 59.
    Reinelt, G.: The Linear Ordering Problem: Algorithms and Applications. Heldermann Verlag (1985)Google Scholar
  60. 60.
    Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations. In Integer programming and combinatorial optimization, vol. 4513 of Lecture Notes in Computer Science, pp. 295–309. Springer Verlag, Berlin (2007)Google Scholar
  61. 61.
    Romero, D., Sánchez-Flores, A.: Methods for the one-dimensional space allocation problem. Comput. Oper. Res. 17(5), 465–473 (1990)CrossRefGoogle Scholar
  62. 62.
    Sait, S.M., Youssef, H.: VLSI physical design automation: theory and practice. IEEE Press, New York, USA (1995)Google Scholar
  63. 63.
    Sanjeevi, S., Kianfar, K.: A polyhedral study of triplet formulation for single row facility layout problem. Discrete Appl. Math. 158(16), 1861–1867 (2010)CrossRefGoogle Scholar
  64. 64.
    Sherali, H.D., Fraticelli, B.M.P., Meller, R.D.: Enhanced model formulation for optimal facility layout. Oper. Res. 51(4), 629–644 (2003)CrossRefGoogle Scholar
  65. 65.
    Simmons, D.M.: One-dimensional space allocation: An ordering algorithm. Oper. Res. 17, 812–826 (1969)CrossRefGoogle Scholar
  66. 66.
    Simmons, D.M.: A further note on one-dimensional space allocation. Oper. Res. 19, p. 249 (1971)CrossRefGoogle Scholar
  67. 67.
    Singh, S.P., Sharma, R.R.K.: A review of different approaches to the facility layout problems. Intl J. Adv. Manuf. Tech. 30(5–6), 425–433 (2006)CrossRefGoogle Scholar
  68. 68.
    Suryanarayanan, J.K., Golden, B.L., Wang, Q.: A new heuristic for the linear placement problem. Computers & Operations Research 18(3), 255–262 (1991)CrossRefGoogle Scholar
  69. 69.
    Takouda, P.L., Anjos, M.F., Vannelli, A.: Global lower bounds for the VLSI macrocell floorplanning problem using semidefinite optimization. In Proceedings of IWSOC 2005, pp. 275–280 (2005)Google Scholar
  70. 70.
    Wong, D.F., Liu, C.L.: A new algorithm for floorplan design. In: Proc. of ACM/IEEE Design Automation Conf., pp. 101–107 (1986)Google Scholar
  71. 71.
    Xie, W., Sahinidis, N.V.: A branch-and-bound algorithm for the continuous facility layout problem. Comput. & Chem. Eng. 32, 1016–1028 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Industrial Engineering & GERADÉcole Polytechnique de MontréalMontréalCanada
  2. 2.Institut für Informatik, Universität zu KölnKölnGermany

Personalised recommendations