The Approach of Moments for Polynomial Equations

Chapter

Abstract

In this chapter we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of polynomials and the dual theory of moments. A crucial ingredient is a semidefinite characterization of the real radical ideal, consisting of all polynomials with the same real zero set as the system of polynomials to be solved. Combining this characterization with ideas from commutative algebra, (numerical) linear algebra and semidefinite optimization yields a new class of real algebraic algorithms. This chapter sheds some light on the underlying theory and the link to polynomial optimization.

References

  1. 1.
    Akhiezer, N.I.: The Classical Moment Problem, Hafner (1965)Google Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, Springer (2003)Google Scholar
  3. 3.
    Bates, D., Sottile, F.: Khovanskii-Rolle continuation for real solutions, arXiv:0908.4579 (2009)Google Scholar
  4. 4.
    Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry, Springer (1998)Google Scholar
  5. 5.
    Cox, D.A., Little, J.B., O’Shea, D.B.: Using Algebraic Geometry, Springer (1998)Google Scholar
  6. 6.
    Cox, D.A., Little, J.B., O’Shea, D.B.: Ideals, Varieties, and Algorithms : An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer (2005)Google Scholar
  7. 7.
    Curto, R.E., Fialkow, L.: Solution of the truncated complex moment problem for flat data. Memoirs of the American Mathematical Society 119(568), 1–62 (1996)Google Scholar
  8. 8.
    de Klerk, E.: Aspects of Semidefinite Programming – Interior Point Algorithms and Selected Applications, Kluwer (2002)Google Scholar
  9. 9.
    Dickenstein, A., Emiris, I.Z. (eds.): Solving Polynomial Equations: Foundations, Algorithms, and Applications. Algorithms and Computation in Mathematics, vol. 14, Springer (2005)Google Scholar
  10. 10.
    Elkadi, M., Mourrain, B.: Introduction à la Résolution des Systèmes d’Equations Polynomiaux. Mathématiques et Applications, vol. 59, Springer (2007)Google Scholar
  11. 11.
    Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension. II. American Journal of Mathematics 58(1), 164–168 (1936)CrossRefGoogle Scholar
  12. 12.
    Henrion, D., Lasserre, J.B.: Detecting global optimality and extracting solutions in GloptiPoly. In: Positive Polynomials in Control, Lecture Notes in Control and Information Sciences, pp. 293–310, Springer (2005)Google Scholar
  13. 13.
  14. 14.
    Kehrein, A., Kreuzer, M.: Characterizations of border bases. Journal of Pure and Applied Algebra 196, 251–270 (2005)CrossRefGoogle Scholar
  15. 15.
    Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization 11, 796–817 (2001)CrossRefGoogle Scholar
  16. 16.
    Lasserre, J.B.: Moments, Positive Polynomials, and their Applications, Imperial College Press (2009)Google Scholar
  17. 17.
    Lasserre, J.B., Laurent, M., Rostalski, P.: Semidefinite characterization and computation of real radical ideals. Foundations of Computational Mathematics 8(5), 607–647 (2008)CrossRefGoogle Scholar
  18. 18.
    Lasserre, J.B., Laurent, M., Rostalski, P.: A unified approach for real and complex zeros of zero-dimensional ideals.. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, vol. 149, pp. 125–156. Springer (2009)Google Scholar
  19. 19.
    Lasserre, J.B., Laurent, M., Rostalski, P.: A prolongation-projection algorithm for computing the finite real variety of an ideal. Theoretical Computer Science 410(27-29), 2685–2700 (2009)CrossRefGoogle Scholar
  20. 20.
    Laurent, M.: Revisiting two theorems of Curto and Fialkow. Proceedings of the American Mathematical Society 133(10), 2965–2976 (2005)CrossRefGoogle Scholar
  21. 21.
    Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp. 157–270. Springer (2009)Google Scholar
  22. 22.
    Laurent, M., Mourrain, B.: A generalized flat extension theorem for moment matrices. Archiv der Mathematik 93(1), 87–98 (2009)CrossRefGoogle Scholar
  23. 23.
    Lazard, D.: Resolution des systemes d’equations algebriques. Theoretical Computer Science 15, 77–110 (1981)CrossRefGoogle Scholar
  24. 24.
    Lazard, D.: Thirty years of polynomial system solving, and now? Journal of Symbolic Computation 44, 222–231 (2009)CrossRefGoogle Scholar
  25. 25.
    Löfberg, J.: YALMIP: A Toolbox for Modeling and Optimization in MATLAB. Computer Aided Control Systems Design Conference (Taipei, Taiwan). Available from http://users.isy.liu.se/johanl/yalmip/ (2004)
  26. 26.
    Möller, H.M.: An inverse problem for cubature formulae. Computational Technologies 9, 13–20 (2004)Google Scholar
  27. 27.
    Mora, T.: Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy. Encyclopedia of Mathematics and its Applications, vol. 88. Cambridge University Press (2003)Google Scholar
  28. 28.
    Mora, T.: Solving Polynomial Equation Systems II: Macaulay’s Paradigm and Gröbner Technology. Encyclopedia of Mathematics and its Applications (v. 2), vol. 99. Cambridge University Press (2005)Google Scholar
  29. 29.
    Mourrain, B.: A new criterion for normal form algorithms. In: Fossorier, M., Imai, H., Lin, S., Poli, A. (eds.) 13th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Honolulu, November 1999. Lecture Notes in Computer Science, vol. 1719, pp. 430–443. Springer (1999)Google Scholar
  30. 30.
    Mourrain, B.: Pythagore’s dilemma, symbolic - numeric computation and the border basis method. In: Symbolic-numeric computation, Trends in Mathematics, pp. 223–243. Birkhäuser (2007)Google Scholar
  31. 31.
    Mourrain, B, Pavone, J.P.: Subdivision methods for solving polynomial equations. Journal of Symbolic Computation 44(3), 292–306 (2009)Google Scholar
  32. 32.
    Mourrain, B, Trebuchet, P.: Generalized normal forms and polynomials system solving. In: Kauers, M. (ed.) Proc. Intern. Symp. on Symbolic and Algebraic Computation, pp. 253–260. ACM Press (2005)Google Scholar
  33. 33.
    Parrilo, P.A.: Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. Ph.D. thesis, California Institute of Technology (2000)Google Scholar
  34. 34.
    Reid, G., Zhi, L.: Solving polynomial systems via symbolic-numeric reduction to geometric involutive form. Journal of Symbolic Computation 44(3), 280–291 (2009)CrossRefGoogle Scholar
  35. 35.
    Rostalski, P.: Algebraic Moments – Real Root Finding and Related Topics, Ph.D. thesis, ETH Zürich (2009)Google Scholar
  36. 36.
    Rostalski, P.: Bermeja: Convex Algebraic Geometry in MATLAB, Available from http://math.berkeley.edu/~philipp/cagwiki.
  37. 37.
    Rouillier, F., Solving zero-dimensional systems through the rational univariate representation. Journal of Applicable Algebra in Engineering, Communication and Computing 9(5), 433–461 (1999)CrossRefGoogle Scholar
  38. 38.
    Shor, N.Z.: An approach to obtaining global extremums in polynomial mathematical programming problems. Kibernetica 5, 102–106 (1987)Google Scholar
  39. 39.
    Sommese, A.J., Wampler, C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific Press (2005)Google Scholar
  40. 40.
    Sottile, F.: Real Solutions to Equations from Geometry. University Lecture Series, vol. 57, AMS, (2011)Google Scholar
  41. 41.
    Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen 207, 87–97 (1974)CrossRefGoogle Scholar
  42. 42.
    Stetter, H.J.: Numerical Polynomial Algebra, SIAM (2004)Google Scholar
  43. 43.
    Sturmfels, B.: Solving Systems of Polynomial Equations, American Mathematical Society (2002)Google Scholar
  44. 44.
    Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming: Theory, Algorithms, and Applications, Vol. 27. Kluwer Academic Publishers, Dordrecht, The Netherlands / Boston, MA (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Centrum voor Wiskunde en InformaticaAmsterdamThe Netherlands
  2. 2.Tilburg UniversityTilburgThe Netherlands
  3. 3.Institut für MathematikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany

Personalised recommendations