Counter-Forensics: Attacking Image Forensics

Chapter

Abstract

This chapter discusses counter-forensics, the art and science of impeding or misleading forensic analyses of digital images. Research on counter-forensics is motivated by the need to assess and improve the reliability of forensic methods in situations where intelligent adversaries make efforts to induce a certain outcome of forensic analyses. Counter-forensics is first defined in a formal decision-theoretic framework. This framework is then interpreted and extended to encompass the requirements to forensic analyses in practice, including a discussion of the notion of authenticity in the presence of legitimate processing, and the role of image models with regard to the epistemic underpinning of the forensic decision problem. A terminology is developed that distinguishes security from robustness properties, integrated from post-processing attacks, and targeted from universal attacks. This terminology is directly applied in a self-contained technical survey of counter-forensics against image forensics, notably techniques that suppress traces of image processing and techniques that synthesize traces of authenticity, including examples and brief evaluations. A discussion of relations to other domains of multimedia security and an overview of open research questions concludes the chapter.

References

  1. 1.
    Barni M, Cancelli G, Esposito A (2010) Forensics aided steganalysis of heterogeneous images. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2010, 1690–1693 2010Google Scholar
  2. 2.
    Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATHGoogle Scholar
  3. 3.
    Böhme R (2010) Advanced statistical steganalysis. Springer, BerlinMATHCrossRefGoogle Scholar
  4. 4.
    Böhme R, Freiling F, Gloe T, Kirchner M (2009) Multimedia forensics is not computer forensics. In: Geradts ZJ, Franke KY, Veenman CJ (eds) Computational forensics, 3rd international workshop, IWCF 2009. Lecture notes in computer science, vol 5718. Springer, Berlin, pp 90–103Google Scholar
  5. 5.
    Cachin C (1998) An information-theoretic model for steganography. In: Aucsmith D (ed) Information hiding, second international workshop, IH 98. Springer, Berlin, pp 306–318Google Scholar
  6. 6.
    Cao G, Zhao Y, Ni R, Tian H (2010) Anti-forensics of contrast enhancement in digital images. In: Proceedings of the 12th ACM workshop on multimedia and security MM&Sec ’10, pp 25–34. ACM Press, New York 2010Google Scholar
  7. 7.
    Cao G, Zhao Y, Ni R, Yu L, Tian H (2010) Forensic detection of median filtering in digital images. In: IEEE international conference on multimedia and EXPO, ICME 2010, pp 89–94. IEEE 2010Google Scholar
  8. 8.
    Chinese Academy of Sciences, Institute of Automation: Casia tampered image detection evaluation database (2009/2010). http://forensics.idealtest.org
  9. 9.
    Christlein V, Riess C, Angelopoulou E (2010) A study on features for the detection of copy-move forgeries. In: Freiling FC (ed) Sicherheit 2010, pp. 105–116. Gesellschaft für Informatik e.V., BonnGoogle Scholar
  10. 10.
    Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T (2008) Digital watermarking and steganography. Morgan Kaufmann, BurlingtonGoogle Scholar
  11. 11.
    Cromey DW (2010) Avoiding twisted pixels: ethical guidelines for the appropriate use and manipulation of scientific digital images. Sci Eng Ethics 16(4):639–667CrossRefGoogle Scholar
  12. 12.
    Fan Z, Queiroz RL (2003) Identification of bitmap compression history: JPEG detection and quantizer estimation. IEEE Trans Image Process 12(2):230–235CrossRefGoogle Scholar
  13. 13.
    Fridrich J (2009) Digital image forensics. IEEE Signal Process Mag 26(2):26–37CrossRefGoogle Scholar
  14. 14.
    Fridrich J (2009) Steganography in digital media: principles, algorithms, and applications. Cambridge University Press, New YorkGoogle Scholar
  15. 15.
    Friedman G (1993) The trustworthy digital camera: restoring credibility to the photographic image. IEEE Trans Consum Electron 39(4):905–910CrossRefGoogle Scholar
  16. 16.
    Gloe T, Borowka K, Winkler A (2009) Feature-based camera model identification works in practice: results of a comprehensive evaluation study. In: Katzenbeisser S, Sadeghi AR (eds) Information hiding, 11th international workshop, IH 2009. Lecture notes in computer science, vol 5806. Springer, Berlin, pp 262–276Google Scholar
  17. 17.
    Gloe T, Kirchner M, Winkler A, Böhme R (2007) Can we trust digital image forensics? In: Proceedings of the 15th international conference on multimedia, MULTIMEDIA ’07, pp 78–86. ACM Press, New York, NY, 2007Google Scholar
  18. 18.
    Goljan M, Fridrich J, Chen M (2010) Sensor noise camera identification: Countering counter-forensics. In: Memon ND, Dittmann J, Alattar AM, Delp EJ (eds) Media forensics and security II, Proceedings of SPIE, vol 7541, p 75410S. SPIE, Bellingham, WA, 2010Google Scholar
  19. 19.
    Hsu YF, Chang SF (2006) Detecting image splicing using geometry invariants and camera characteristics consistency. In: IEEE international conference on multimedia and EXPO, ICME 2006, pp. 549–552. IEEE 2006Google Scholar
  20. 20.
    Huang Y (2005) Can digital image forgery detection be unevadable? A case study: color filter array interpolation statistical feature recovery. In: Li S, Pereira F, Shum HY, Tescher AG (eds) Proceedings of SPIE: visual communications and image processing, vol SPIE 5960, p 59602W 2005Google Scholar
  21. 21.
    Johnson MK, Farid H (2007) Exposing digital forgeries in complex lighting environments. IEEE Trans Inf Forensics Secur 2(3):450–461CrossRefGoogle Scholar
  22. 22.
    Kalker T (2001) Considerations on watermarking security. In: IEEE fourth workshop on multimedia signal processing, pp 201–206Google Scholar
  23. 23.
    Kerckhoffs A (1883) La cryptographie militaire. J des Sci Militaires IX 5–38:161–191Google Scholar
  24. 24.
    Kirchner M, Böhme R (2007) Tamper hiding: defeating image forensics. In: Furon T, Cayre F, Doërr G, Bas P (eds) Information hiding, 9th international workshop, IH 2007, Lecture notes in computer science, vol 4567. Springer, Berlin, pp 326–341Google Scholar
  25. 25.
    Kirchner M, Böhme R (2008) Hiding traces of resampling in digital images. IEEE Trans Inf Forensics Secur 3(4):582–592CrossRefGoogle Scholar
  26. 26.
    Kirchner M, Böhme R (2009) Synthesis of color filter array pattern in digital images. In: Delp EJ, Dittmann J, Memon ND, Wong PW (eds) Media forensics and security, Proceedings of SPIE, vol 7254, p 72540K. SPIE, Bellingham, WA 2009Google Scholar
  27. 27.
    Kirchner M, Fridrich J (2010) On detection of median filtering in digital images. In: Memon ND, Dittmann J, Alattar AM, Delp EJ (eds) Media forensics and security II, Proceedings of SPIE-IS&T electronic imaging, vol SPIE 7541, p 754110. San Jose, CA, USA 2010Google Scholar
  28. 28.
    Lai S, Böhme R (2011) Countering counter-forensics: the case of JPEG compression. In: Filler T, Pevný T, Craver S, Ker A (eds) Information Hiding, 13th International Conference, IH 2011, vol 6958. Springer, Berlin, pp 285–298Google Scholar
  29. 29.
    Lam EY, Goodman JW (2000) A mathematical analysis of the DCT coefficient distributions for images. IEEE Trans Image Process 9(10):1661–1666MATHCrossRefGoogle Scholar
  30. 30.
    Li CT, Chang CY, Li Y (2010) On the repudiability of device identification and image integrity verification using sensor pattern noise. In: Weerasinghe D (ed) Information security and digital forensics, first international conference, ISDF 2009, Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 41. Springer, Berlin, pp 19–25Google Scholar
  31. 31.
    Liew AWC, Yan H (2004) Blocking artifacts suppression in block-coded images using overcomplete wavelet representation. IEEE Trans Circ Syst Video Technology 14(4):450–461CrossRefGoogle Scholar
  32. 32.
    Lukáš J, Fridrich J, Goljan M (2005) Detecting digital image forgeries using sensor pattern noise. In: Said A, Apostolopoulos JG, (eds) Proceedings of SPIE: image and video communications and processing 2005, vol 5685, pp 249–260Google Scholar
  33. 33.
    Lukáš J, Fridrich J, Goljan M (2006) Digital camera identification from sensor noise. IEEE Trans Inf Forensics Secur 1(2):205–214Google Scholar
  34. 34.
    Meerwald P, Uhl A (2009) Additive spread-spectrum watermark detection in demosaicked images. In: MM&Sec ’09, Proceedings of the multimedia and security workshop 2009, pp 25–32Google Scholar
  35. 35.
    Ng TT, Chang SF (2004) A data set of authentic and spliced image blocks. Tech Rep ADVENT 203-2004-3, Department of Electrical Engineering, Columbia University, USAGoogle Scholar
  36. 36.
    Parrish D, Noonan B (2008) Image manipulation as research misconduct. Sci Eng Ethics 15(2):161–167CrossRefGoogle Scholar
  37. 37.
    Pfitzmann A, Hansen M (2010) A terminology for talking about privacy by data minimization: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management. http://dud.inf.tu-dresden.de/AnonTerminology.shtml 2010. (Version 0.34)
  38. 38.
    Popescu AC, Farid H (2004) Statistical tools for digital forensics. In: Fridrich J (ed) Information hiding, 6th international workshop, IH 2004. Lecture notes in computer science, vol 3200. Springer, Berlin, pp 128–147Google Scholar
  39. 39.
    Popescu AC, Farid H (2005) Exposing digital forgeries in color filter array interpolated images. IEEE Trans Signal Process 53(10):3948–3959MathSciNetCrossRefGoogle Scholar
  40. 40.
    Sallee P (2005) Model-based methods for steganography and steganalysis. Int J Image Graph 5(1):167–189CrossRefGoogle Scholar
  41. 41.
    Stamm MC, Liu KJR (2008) Blind forensics of contrast enhancement in digital images. In: IEEE international conference on image processing, ICIP 2008, pp 3112–3115Google Scholar
  42. 42.
    Stamm MC, Liu KJR (2010) Wavelet-based image compression anti-forensics. In: IEEE international conference on image processing, ICIP 2010Google Scholar
  43. 43.
    Stamm MC, Tjoa SK, Lin WS, Liu KJR (2010) Anti-forensics of JPEG compression. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2010, pp 1694–1697Google Scholar
  44. 44.
    Stamm MC, Tjoa SK, Lin WS, Liu KJR (2010) Undetectable image tampering through JPEG compression anti-forensics. In: IEEE international conference on image processing, ICIP 2010Google Scholar
  45. 45.
    Steinebach M, Liu H, Fan P, Katzenbeisser S Cell phone camera ballistics: attacks and countermeasures. In: Creutzburg R, Akopian D (eds) Multimedia on mobile devices 2010, Proceedings of SPIE, vol 7542, p 75420B. SPIE, Bellingham, WA (2010)Google Scholar
  46. 46.
    Steinebach M, Ouariachi ME, Liu H, Katzenbeisser S (2009) On the reliability of cell phone camera fingerprint recognition. In: Goel S (ed) Digital forensics and cyber crime, first international ICST conference, ICDF2C 2009. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering, vol 31. Springer, Berlin, pp 69–76Google Scholar
  47. 47.
    Thèvenaz P, Blu T, Unser M (2000) Image interpolation and resampling. In: Handbook of medical imaging, pp 393–420. Academic Press, Orlando, FL 2000Google Scholar
  48. 48.
    Ullerich C, Westfeld A (2008) Weaknesses of MB2. In: Shi YQ, Kim HJ, Katzenbeisser S (eds) Digital watermarking (Proceedings of IWDW 2007). Lecture notes in computer science, vol 5041. Springer-Verlag, Berlin, Heidelberg, pp 127–142Google Scholar
  49. 49.
    Valenzise G, Tagliasacchi M, Tubaro S (2011) The cost of JPEG compression anti-forensics. In: IEEE international conference on acoustics, speech and signal processing, ICASSP 2011, pp. 1884–1887. IEEEGoogle Scholar
  50. 50.
    Valenzise G, Nobile V, Tagliasacchi M, Tubaro S Countering JPEG anti-forensics. In: IEEE international conference on image processing, ICIP 2011. IEEE (in press)Google Scholar
  51. 51.
    Yuan HD (2011) Blind forensics of median filtering in digital images. IEEE Trans Inf Forensics Secur 6(4):1335–1345CrossRefGoogle Scholar
  52. 52.
    Zhai G, Zhang W, Yang X, Lin W, Xu Y (2008) Efficient image deblocking based on postfiltering in shifted windows. IEEE Trans Circ Syst Video Tech 18(1):122–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information SystemsWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.International Computer Science InstituteBerkeleyUSA

Personalised recommendations