Digital Camera Image Formation: Introduction and Hardware



A high-level overview of image formation in a digital camera is presented. The discussion includes optical and electronic hardware issues, highlighting the impact of hardware characteristics on the resulting images.



The authors gratefully acknowledge many helpful discussions with Mrityunjay Kumar and Aaron Deever in the development and review of this chapter.


  1. 1.
    Adams J, Parulski K, Spaulding K (1998) Color processing in digital cameras. IEEE Micro 18:20–30CrossRefGoogle Scholar
  2. 2.
    Bayer B (1976) Color imaging array. US Patent 3,971,065Google Scholar
  3. 3.
    Brostow GJ, Essa I (2001) Image-based motion blur for stop motion animation. In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01, ACM, New York, pp 561–566
  4. 4.
    Chi MH (1998) Method of forming a new bipolar/CMOS pixel for high resolution imagers. US Patent 5,854,100Google Scholar
  5. 5.
  6. 6.
    Gaskill J (1978) Linear systems, Fourier transforms, and optics. Wiley, New YorkGoogle Scholar
  7. 7.
    Goodman J (1968) Introduction to Fourier optics. McGraw-Hill, San FranciscoGoogle Scholar
  8. 8.
    Guidash RM (2003) Active pixel sensor with wired floating diffusions and shared amplifier. US Patent 6,657,665Google Scholar
  9. 9.
    Guidash RM, Lee PP (1999) Active pixel sensor with punch-through reset and cross-talk suppression. US Patent 5,872,371Google Scholar
  10. 10.
    Holst GC, Lomheim TS (2007) CMOS/CCD sensors and camera systems. The International Society for Optical Engineering, Bellingham, WA, USAGoogle Scholar
  11. 11.
    Hunt R (1987) The reproduction of colour. Fountain Press, EnglandGoogle Scholar
  12. 12.
    Isogai T (1996) Photoelectric conversion device utilizing a JFET. US Patent 5,528,059Google Scholar
  13. 13.
    Kim YC, Kim YT, Choi SH, Kong HK, Hwang SI, Ko JH, Kim BS, Asaba T, Lim SH, Hahn JS, Im JH, Oh TS, Yi DM, Lee JM, Yang WP, Ahn JC, Jung ES, Lee YH (2006) 1/2-inch 7.2mpixel cmos image sensor with 2.25/spl mu/m pixels using 4-shared pixel structure for pixel-level summation. pp 1994–2003Google Scholar
  14. 14.
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Manoury EJ, Klaassens W, van Kuijk H, Meessen L, Kleimann A, Bogaart E, Peters I, Stoldt H, Koyuncu M, Bosiers J (2008) A 36 \(\times 48 \text{ mm}^{2}\) 48m-pixel CCD imager for professional DSC applications. pp 1–4Google Scholar
  19. 19.
    McColgin WC, Tivarus C, Swanson CC, Filo AJ (2007) Bright-pixel defects in irradiated ccd image sensors. In: Materials research society symposium proceedings, vol 994, p 341Google Scholar
  20. 20.
    Meyers MM (1997) Diffractive/refractive lenlet array. US Patent 5,696,371Google Scholar
  21. 21.
    Meynants G, Scheffer D, Dierickx B, Alaerts A (2004) A 14-megapixel \(36 \times 24-\text{ mm}^{2}\) image sensor. pp. 168–174, SPIE. 10.1117/12.525339.
  22. 22.
    Nakamura J (ed) (2005) Image sensors and signal processing for digital still cameras (Optical science and engineering). CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Ochi S (1984) Photosensor pattern of solid-state imaging sensors. US Patent 4,441,123Google Scholar
  24. 24.
    Ohta J (2007) Smart CMOS image sensors and applications (Optical science and engineering). CRC Press, Boca RatonGoogle Scholar
  25. 25.
    Palum R (2009) Optical antialiasing filters. In: Lukac R (ed) Single-sensor imaging. CRC Press, Boca RatonGoogle Scholar
  26. 26.
    Pecoraro G, Shelestak L (1988) Transparent infrared absorbing glass and method of making. US Patent 4,792,536Google Scholar
  27. 27.
    Poplin D (2006) An automatic flicker detection method for embedded camera systems. IEEE Trans Consum Electron 52(2):308–311CrossRefGoogle Scholar
  28. 28.
    Popovic Z, Sprague R, Neville Connell G (1987) Pedestal-type microlens fabrication process. US Patent 4,689,291Google Scholar
  29. 29.
    Stevens E, Komori H, Doan H, Fujita H, Kyan J, Parks C, Shi G, Tivarus C, Wu J (2008) Low-crosstalk and low-dark-current cmos image-sensor technology using a hole-based detector. pp 60–595Google Scholar
  30. 30.
    Tamburrino D, Speigle JM, Tweet DJ, LeeJJ (2010) 2PFC\(^\text{ TM}\)(two pixels, full color): image sensor demosaicing and characterization. J Electron Imaging 19(2): 021103-1–021103-13Google Scholar
  31. 31.
    Turner RM, Guttosch RJ (2006) Development challenges of a new image capture technology: foveon X3 image sensors. In: International congress of imaging science, pp 175–181, Rochester, NY, USAGoogle Scholar
  32. 32.
    Watanabe M, Nayar S (1995) Telecentric optics for computational vision. In: Proceedings of the European Conference on Computer Vision, pp 439–451Google Scholar
  33. 33.
    Yamamoto Y, Iwamoto H (2006) Solid-state imaging device and method of manufacturing solid-state imaging device background of the invention. US Patent 7,101,726Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Corporate Research and Engineering, Eastman Kodak CompanyRochesterUSA

Personalised recommendations