Experimentally Estimating Phase Response Curves of Neurons: Theoretical and Practical Issues

  • Theoden Netoff
  • Michael A. Schwemmer
  • Timothy J. Lewis
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 6)

Abstract

Phase response curves (PRCs) characterize response properties of oscillating neurons to pulsetile input and are useful for linking the dynamics of individual neurons to network dynamics. PRCs can be easily computed for model neurons. PRCs can be also measured for real neurons, but there are many issues that complicate this process. Most of these complications arise from the fact that neurons are noisy on several time-scales. There is considerable amount of variation (jitter) in the inter-spike intervals of “periodically” firing neurons. Furthermore, neuronal firing is not stationary on the time scales on which PRCs are usually measured. Other issues include determining the appropriate stimuli to use and how long to wait between stimuli.In this chapter, we consider many of the complicating factors that arise when generating PRCs for real neurons or “realistic” model neurons. We discuss issues concerning the stimulus waveforms used to generate the PRC and ways to deal with the effects of slow time-scale processes (e.g. spike frequency adaption). We also address issues that are present during PRC data acquisition and discuss fitting “noisy” PRC data to extract the underlying PRC and quantify the stochastic variation of the phase responses. Finally, we describe an alternative method to generate PRCs using small amplitude white noise stimuli.

References

  1. Burnham, K. P., & Anderson, D. R. (1998). Model selection and inference: A practical information-theoretic approach. New York: Springer.Google Scholar
  2. Canavier, C. C. (2005). The application of phase resetting curves to the analysis of pattern generating circuits containing bursting neurons. In S. Coombes, P. C. Bressloff & N. J. Hackensack (Eds.), Bursting: The genesis of rhythm in the nervous system (pp. 175–200) World Scientific.Google Scholar
  3. Cruikshank, S. J., Lewis, T. J., & Connors, B. W. (2007). Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex.Nature Neuroscience, 10(4), 462–468. doi:10.1038/nn1861.PubMedGoogle Scholar
  4. Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: A method for understanding synchronization of adapting neurons.Journal of Neurophysiology, 102(1), 387–398. doi:10.1152/jn.00037.2009.PubMedCrossRefGoogle Scholar
  5. Dorval, A. D., 2nd, Bettencourt, J., Netoff, T. I., & White, J. A. (2007). Hybrid neuronal network studies under dynamic clamp.Methods in Molecular Biology (Clifton, N.J.), 403, 219–231. doi:10.1007/978–1–59745–529–9_15.Google Scholar
  6. Dorval, A. D., Bettencourt, J. C., Netoff, T. I., & White, J. A. (2008). Hybrid neuronal network studies under dynamic clamp. In Applied patch clamp Humana.Google Scholar
  7. Dorval, A. D., Christini, D. J., & White, J. A. (2001). Real-time linux dynamic clamp: A fast and flexible way to construct virtual ion channels in living cells.Ann Biomed Eng, 29(10), 897–907.PubMedCrossRefGoogle Scholar
  8. Ermentrout, G. B., Beverlin, B., 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. J Comput Neurosci, [Epub ahead of print].Google Scholar
  9. Ermentrout, G. B., & Chow, C. C. (2002). Modeling neural oscillations.Physiol Behav, 77(4–5), 629–633.PubMedCrossRefGoogle Scholar
  10. Ermentrout, G. B., Galan, R. F., & Urban, N. N. (2007). Relating neural dynamics to neural coding.Physical Review Letters, 99(24), 248103.PubMedCrossRefGoogle Scholar
  11. Ermentrout, G. B., & Kopell, N. (1991). Multiple pulse interactions and averaging in systems of coupled neural oscillators.J Math Biol, 29, 195–217.CrossRefGoogle Scholar
  12. Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2005). Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling.Physical Review Letters, 94(15), 158101.PubMedCrossRefGoogle Scholar
  13. Galán, R. F., Bard Ermentrout, G., & Urban, N. N. (2006). Predicting synchronized neural assemblies from experimentally estimated phase-resetting curves.Neurocomputing, 69(10–12), 1112–1115. doi:DOI: 10.1016/j.neucom.2005.12.055.CrossRefGoogle Scholar
  14. Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: Computational and experimental study.Journal of Neurophysiology, 78(3), 1199–1211.PubMedGoogle Scholar
  15. Hille, B. (1992). Ionic channels of excitable membranes (2nd ed.). Sunderland: Sinauer Associates.Google Scholar
  16. Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting. Cambridge: MIT.Google Scholar
  17. Kuramoto, Y. (1984). Chemical oscillations, waves, and turbulence. Berlin: Springer.CrossRefGoogle Scholar
  18. Lewis, T. J., & Rinzel, J. (2003). Dynamics of spiking neurons connected by both inhibitory and electrical coupling.Journal of Computational Neuroscience, 14(3), 283–309.PubMedCrossRefGoogle Scholar
  19. Mancilla, J. G., Lewis, T. J., Pinto, D. J., Rinzel, J., & Connors, B. W. (2007). Synchronization of electrically coupled pairs of inhibitory interneurons in neocortex.The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 27(8), 2058–2073. doi:10.1523/JNEUROSCI.2715–06.2007.CrossRefGoogle Scholar
  20. Maran, S. K., & Canavier, C. C. (2008). Using phase resetting to predict 1:1 and 2:2 locking in two neuron networks in which firing order is not always preserved.Journal of Computational Neuroscience, 24(1), 37–55. doi:10.1007/s10827–007–0040-z.PubMedCrossRefGoogle Scholar
  21. Miranda-Dominguez, O., Gonia, J., & Netoff, T. I. (2010). Firing rate control of a neuron using a linear proportional-integral controller.Journal of Neural Engineering, 7(6), 066004. doi:10.1088/1741–2560/7/6/066004.PubMedCrossRefGoogle Scholar
  22. Netoff, T. I., Acker, C. D., Bettencourt, J. C., & White, J. A. (2005). Beyond two-cell networks: Experimental measurement of neuronal responses to multiple synaptic inputs.Journal of Computational Neuroscience, 18(3), 287–295. doi:10.1007/s10827–005–0336–9.PubMedCrossRefGoogle Scholar
  23. Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation.Journal of Neurophysiology, 93(3), 1197–1208. doi:00982.2004 [pii]; 10.1152/jn.00982.2004.PubMedCrossRefGoogle Scholar
  24. Oprisan, S. A., & Canavier, C. C. (2001). Stability analysis of rings of pulse-coupled oscillators: The effect of phase-resetting in the second cycle after the pulse is important at synchrony and for long pulses.Differential Equations and Dynamical Systems, 9, 243–258.Google Scholar
  25. Ota, K., Omori, T., & Aonishi, T. (2009). MAP estimation algorithm for phase response curves based on analysis of the observation process.Journal of Computational Neuroscience, 26(2), 185–202. doi:10.1007/s10827–008–0104–8.PubMedCrossRefGoogle Scholar
  26. Ota, K., Nomura, M., & Aoyagi, T. (2009). Weighted spike-triggered average of a fluctuating stimulus yielding the phase response curve.Physical Review Letters, 103(2), 024101. doi:10.1103/PhysRevLett.103.024101.PubMedCrossRefGoogle Scholar
  27. Press, W. H. (1992). Numerical recipes in C: The art of scientific computing (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  28. Prinz, A. A., Abbott, L. F., & Marder, E. (2004). The dynamic clamp comes of age.Trends in Neurosciences, 27(4), 218–224. doi:10.1016/j.tins.2004.02.004.PubMedCrossRefGoogle Scholar
  29. Sharp, A. A., O’Neil, M. B., Abbott, L. F., & Marder, E. (1993). Dynamic clamp: Computer-generated conductances in real neurons.J Neurophysiol, 69(3), 992–995.PubMedGoogle Scholar
  30. Tateno, T., & Robinson, H. P. (2007). Phase resetting curves and oscillatory stability in interneurons of rat somatosensory cortex.Biophysical Journal, 92(2), 683–695. doi:10.1529/biophysj.106.088021.PubMedCrossRefGoogle Scholar
  31. Van Vreeswijk, C., Abbott, L. F., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing.J Comput Neurosci, 1(4), 313–321.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Theoden Netoff
    • 1
  • Michael A. Schwemmer
    • 2
  • Timothy J. Lewis
    • 2
  1. 1.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations