Advertisement

Recovery of Stimuli Encoded with a Hodgkin–Huxley Neuron Using Conditional PRCs

  • Anmo J. Kim
  • Aurel A. LazarEmail author
Chapter
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI, volume 6)

Abstract

Understanding neural encoding/decoding mechanisms is one of the most fundamental problems in the field of sensory neuroscience. The Hodgkin–Huxley equations provide an explicit description of an encoding mechanism. However, the daunting complexity of the Hodgkin–Huxley equations makes the task of recovery of stimuli encoded with a Hodgkin–Huxley neuron particularly challenging. A highly effective strategy calls for reducing the Hodgkin–Huxley neuron to a project-integrate-and-fire (PIF) neuron. Using the reduced PIF model, we present three different recovery algorithms for stimuli encoded with a Hodgkin-Huxley neuron. All algorithms reconstruct the stimuli from the neuron’s output spike train. The first algorithm is based on the assumption that the Hodgkin–Huxley neuron has a known PRC. The second algorithm assumes that the PRC is conditionally known on each interspike time interval. Finally, the third algorithm operates under the assumption that the conditional PRC is unknown and has to be estimated. We establish an estimate of the conditional PRC based upon the readily observable inter-spike time interval. We compare the performance of these algorithms for a wide range of input stimuli.

References

  1. Arcas, B. A. y, Fairhall, A. L., & Bialek,W. (2003). Computation in a single neuron: Hodgkin and Huxley revisited. Neural Computation, 15(8), 1715–49.Google Scholar
  2. Bialek, W., & Rieke, F. (1991). Reading a neural code. Science, 252(5014), 1854–1857.PubMedCrossRefGoogle Scholar
  3. Dayan, P., & Abbott, L. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press.Google Scholar
  4. Ermentrout, B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural Computation, 8(5), 979–1001.PubMedCrossRefGoogle Scholar
  5. Hastings, J., & Sweeney, B. (1958). A Persistent Diurnal Rhythm of Luminescence in Gonyaulax Polyedra. The Biological Bulletin, 115(3), 440–458.CrossRefGoogle Scholar
  6. Hodgkin, A. L., & Huxley, A. F. (1952). A Quantitative Description of Membrane Current and its Application to Conduction and Excitation. J. Physiol, 117, 500–557.PubMedGoogle Scholar
  7. Hoppensteadt, F., & Izhikevich, E. (1997). Weakly Connected Neural Networks. Springer.Google Scholar
  8. Izhikevich, E. M. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. The MIT Press.Google Scholar
  9. Kim, A. J., Lazar, A. A., & Slutskiy, Y. B. (2010, Aug). System identification of drosophila olfactory sensory neurons. Journal of Computational Neuroscience. (published online doi:10.1007/s10827-010- 0265-0)Google Scholar
  10. Kuramoto, R. (1984). Chemical Oscillations, Waves, and Turbulence. Springer- Verlag.Google Scholar
  11. Lazar, A. A. (2004). Time Encoding with an Integrate-and-Fire Neuron with a Refractory Period. Neurocomputing, 58–60, 53–58.CrossRefGoogle Scholar
  12. Lazar, A. A. (2007). Recovery of Stimuli Encoded with Hodgkin-Huxley Neurons. In Cosyne’07 (p. III-94).Google Scholar
  13. Lazar, A. A. (2010). Population encoding with hodgkin-huxley neurons. IEEE Transactions on Information Theory, 56(2), 821–837. Special Issue on Molecular Biology and Neuroscience.Google Scholar
  14. Lazar, A. A., & Pnevmatikakis, E. A. (2008). Faithful Representation of Stimuli with a Population of Integrate-and-Fire Neurons. Neural Computation, 20(11), 2715–2744.PubMedCrossRefGoogle Scholar
  15. Lazar, A. A., & Tóth, L. T. (2004). Perfect Recovery and Sensitivity Analysis of Time Encoded Bandlimited Signals. Circuits and Systems I: Regular Paper, IEEE Transactions on, 51(10), 2060–2073.CrossRefGoogle Scholar
  16. Medina, J. F., & Lisberger, S. G. (2007). Variation, Signal, and Noise in Cerebellar Sensory-Motor Processing for Smooth-Pursuit Eye Movements. Journal of Neuroscience, 27(25), 6832.PubMedCrossRefGoogle Scholar
  17. Naka, K. I., Chan, R. Y., & Yasui, S. (1979). Adaptation in catfish retina. Journal of Neurophysiology, 42(2), 441–54.PubMedGoogle Scholar
  18. Ota, K., Omori, T., & Aonishi, T. (2009). MAP Estimation Algorithm for Phase Response Curves based on Analysis of the Observation Process. Journal of Computational Neuroscience, 26(2), 185–202.PubMedCrossRefGoogle Scholar
  19. Penrose, R. (1955). A Generalized Inverse for Matrices. In Proceedings of the Cambridge Philosophical Society (Vol. 51, pp. 406–413).Google Scholar
  20. Perkel, D. H., Gerstein, G. L., & Moore, G. P. (1967). Neuronal spike trains and stochastic point processes. I. The single spike train. Biophysical Journal, 7(4), 391–418.Google Scholar
  21. Schuetze, S. M. (1983). The discovery of the action potential. Trends in Neurosciences, 6, 164–168.CrossRefGoogle Scholar
  22. Winfree, A. (1967). Biological Rhythms and the Behavior of Populations of Coupled Oscillators. Journal of Theoretical Biology, 16(1), 15–42.PubMedCrossRefGoogle Scholar
  23. Yoshimura, K., & Arai, K. (2008, Jan). Phase Reduction of Stochastic Limit Cycle Oscillators. Physical Review Letters, 101, 15401-1–15401-4.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Electrical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations