Bio-Macromolecules and Hydration Water Dynamics

  • Kathleen WoodEmail author
  • Martin Weik
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Biological macromolecules are dynamic entities, a characteristic which is essential for them to carry out their functions. The vast majority of biological processes are mediated by water and the extent to which macromolecules are hydrated and the solvent type modulate their dynamics. The microscopic properties of the hydration water and how they influence the dynamical behaviour of membranes, proteins, DNA, and RNA are therefore questions of fundamental importance to understand how biological processes occur in cellulo. Here we review neutron-scattering studies on the solvent influence on protein dynamics, studies of hydration water itself, and the first work on characterising cytoplasmic water. Whilst the time- and length-scales accessible by neutrons and their scattering cross-sections make them particularly suitable to the study of water, molecular dynamics simulations are also increasingly used to interpret measurements. Where appropriate, we also cite their results.


Molecular Dynamic Simulation Neutron Scattering Hydration Water Translational Diffusion Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Orecchini A, Paciaroni A, De Francesco A, Petrillo C, Sacchetti F (2009) Collective dynamics of protein hydration water by brillouin neutron spectroscopy. J Am Chem Soc 131(13):4664–4669Google Scholar
  2. 2.
    Rheinstadter MC, Seydel T, Demmel F, Salditt T (2005) Molecular motions in lipid bilayers studied by the neutron backscattering technique. Phys Rev E Stat Nonlin Soft Matter Phys 71(6 Pt 1):061908Google Scholar
  3. 3.
    Rheinstadter MC, Seydel T, Salditt T (2007) Nanosecond molecular relaxations in lipid bilayers studied by high energy-resolution neutron scattering and in situ diffraction. Phys Rev E Stat Nonlin Soft Matter Phys 75(1 Pt 1):011907Google Scholar
  4. 4.
    Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35(4):327–367Google Scholar
  5. 5.
    Doster W, Cusack S, Petry W (1989) Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337(6209):754–756Google Scholar
  6. 6.
    Zaccai G (2000) How soft is a protein? A protein dynamics force constant measured by neutron scattering. Science 288(5471):1604–1607Google Scholar
  7. 7.
    Fitter J (1999) The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J 76(2):1034–1042Google Scholar
  8. 8.
    Kealley CS, Sokolova AV, Kearley GJ, Kemner E, Russina M, Faraone A, Hamilton WA, Gilbert EP (2010) Dynamical transition in a large globular protein: macroscopic properties and glass transition. Biochim Biophys Acta 1804(1):34–40Google Scholar
  9. 9.
    Roh JH, Curtis JE, Azzam S, Novikov VN, Peral I, Chowdhuri Z, Gregory RB, Sokolov AP (2006) Influence of hydration on the dynamics of lysozyme. Biophys J 91(7):2573–2588Google Scholar
  10. 10.
    Wood K, Caronna C, Fouquet P, Haussler W, Natali F, Ollivier J, Orecchini A, Plazanet M, Zaccai G (2008) A benchmark for protein dynamics: ribonuclease A measured by neutron scattering in a large wavevector-energy transfer range. Chem Phys 345(2-3):305–314Google Scholar
  11. 11.
    Ferrand M, Dianoux AJ, Petry W, Zaccai G (1993) Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Proc Natl Acad Sci USA 90(20):9668–9672Google Scholar
  12. 12.
    Fitter J, Lechner RE, Dencher NA (1997) Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Biophys J 73(4):2126–2137Google Scholar
  13. 13.
    Natali F, Castellano C, Pozzi D, Congiu Castellano A (2005) Dynamic properties of an oriented lipid/DNA complex studied by neutron scattering. Biophys J 88(2):1081–1090Google Scholar
  14. 14.
    Caliskan G, Briber RM, Thirumalai D, Garcia-Sakai V, Woodson SA, Sokolov AP (2006) Dynamic transition in tRNA is solvent induced. J Am Chem Soc 128(1):32–33Google Scholar
  15. 15.
    Chu XQ, Fratini E, Baglioni P, Faraone A, Chen SH (2008) Observation of a dynamic crossover in RNA hydration water which triggers a dynamic transition in the biopolymer. Phys Rev E Stat Nonlin Soft Matter Phys 77(1 Pt 1):011908Google Scholar
  16. 16.
    Chen SH, Liu L, Chu X, Zhang Y, Fratini E, Baglioni P, Faraone A, Mamontov E (2006) Experimental evidence of fragile-to-strong dynamic crossover in DNA hydration water. J Chem Phys 125(17):171103Google Scholar
  17. 17.
    Daniel RM, Finney JL, Smith JC (2003) The dynamic transition in proteins may have a simple explanation. Faraday Discuss 122:163–169; discussion 171–190Google Scholar
  18. 18.
    Lee AL, Wand AJ (2001) Microscopic origins of entropy, heat capacity and the glass transition in proteins. Nature 411(6836):501–504Google Scholar
  19. 19.
    Lehnert U, Reat V, Weik M, Zaccai G, Pfister C (1998) Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Biophys J 75(4):1945–1952Google Scholar
  20. 20.
    Cordone L, Ferrand M, Vitrano E, Zaccai G (1999) Harmonic behavior of trehalose-coated carbon-monoxy-myoglobin at high temperature. Biophys J 76(2):1043–1047Google Scholar
  21. 21.
    Tsai AM, Neumann DA, Bell LN (2000) Molecular dynamics of solid-state lysozyme as affected by glycerol and water: a neutron scattering study. Biophys J 79(5):2728–2732Google Scholar
  22. 22.
    Cornicchi E, Onori G, Paciaroni A (2005) Picosecond-time-scale fluctuations of proteins in glassy matrices: the role of viscosity. Phys Rev Lett 95(15):158104Google Scholar
  23. 23.
    Reat V, Dunn R, Ferrand M, Finney JL, Daniel RM, Smith JC (2000) Solvent dependence of dynamic transitions in protein solutions. Proc Natl Acad Sci USA 97(18):9961–9966Google Scholar
  24. 24.
    Gabel F, Weik M, Doctor BP, Saxena A, Fournier D, Brochier L, Renault F, Masson P, Silman I, Zaccai G (2004) The influence of solvent composition on global dynamics of human butyrylcholinesterase powders: a neutron scattering study. Biophys J 86(5):3152–3165Google Scholar
  25. 25.
    Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci USA 99(25):16047–16051Google Scholar
  26. 26.
    Iben IE, Braunstein D, Doster W, Frauenfelder H, Hong MK, Johnson JB, Luck S, Ormos P, Schulte A, Steinbach PJ, Xie AH, Young RD (1989) Glassy behavior of a protein. Phys Rev Lett 62(16):1916–1919Google Scholar
  27. 27.
    Fenimore PW, Frauenfelder H, McMahon BH, Young RD (2004) Bulk-solvent and hydration-shell fluctuations, similar to alpha- and beta-fluctuations in glasses, control protein motions and functions. Proc Natl Acad Sci USA 101(40):14408–14413Google Scholar
  28. 28.
    Vitkup D, Ringe D, Petsko GA, Karplus M (2000) Solvent mobility and the protein “glass” transition. Nat Struct Biol 7(1):34–38Google Scholar
  29. 29.
    Tarek M, Tobias DJ (2002) Role of protein-water hydrogen bond dynamics in the protein dynamical transition. Phys Rev Lett 88(13):138101Google Scholar
  30. 30.
    Tournier AL, Xu J, Smith JC (2003) Translational hydration water dynamics drives the protein glass transition. Biophys J 85(3):1871–1875Google Scholar
  31. 31.
    Curtis JE, Dirama TE, Carri GA, Tobias DJ (2006) Inertial suppression of protein dynamics in a binary glycerol-trehalose glass. J Phys Chem B 110(46):22953–22956Google Scholar
  32. 32.
    Jasnin M, Tehei M, Moulin M, Haertlein M, Zaccai G (2008) Solvent isotope effect on macromolecular dynamics in E. coli. Eur Biophys J 37(5):613–617Google Scholar
  33. 33.
    Chen SH, Liu L, Fratini E, Baglioni P, Faraone A, Mamontov E (2006) Observation of fragile-to-strong dynamic crossover in protein hydration water. Proc Natl Acad Sci USA 103(24):9012–9016Google Scholar
  34. 34.
    Kumar P, Yan Z, Xu L, Mazza MG, Buldyrev SV, Chen SH, Sastry S, Stanley HE (2006) Glass transition in biomolecules and the liquid-liquid critical point of water. Phys Rev Lett 97(17):177802Google Scholar
  35. 35.
    Pawlus S, Khodadadi S, Sokolov AP (2008) Conductivity in hydrated proteins: no signs of the fragile-to-strong crossover. Phys Rev Lett 100(10):108103Google Scholar
  36. 36.
    Swenson J, Jansson H, Bergman R (2006) Relaxation processes in supercooled confined water and implications for protein dynamics. Phys Rev Lett 96(24):247802Google Scholar
  37. 37.
    Chu XQ, Faraone A, Kim C, Fratini E, Baglioni P, Leao JB, Chen SH (2009) Proteins remain soft at lower temperatures under pressure. J Phys Chem B 113(15):5001–5006Google Scholar
  38. 38.
    Leiting B, Marsilio F, O’Connell JF (1998) Predictable deuteration of recombinant proteins expressed in Escherichia coli. Anal Biochem 265(2):351–355Google Scholar
  39. 39.
    Teixeira SC, Ankner J, Bellissent-Funel MC, Bewley R, Blakeley MP, Coates L, Dahint R, Dalgliesh R, Dencher N, Dhont J, Fischer P, Forsyth VT, Fragneto G, Frick B, Geue T, Gilles R, Gutberlet T, Haertlein M, Hauss T, Haussler W, Heller WT, Herwig K, Holderer O, Juranyi F, Kampmann R, Knott R, Kohlbrecher J, Kreuger S, Langan P, Lechner R, Lynn G, Majkrzak C, May R, Meilleur F, Mo Y, Mortensen K, Myles DA, Natali F, Neylon C, Niimura N, Ollivier J, Ostermann A, Peters J, Pieper J, Ruhm A, Schwahn D, Shibata K, Soper AK, Straessle T, Suzuki UI, Tanaka I, Tehei M, Timmins P, Torikai N, Unruh T, Urban V, Vavrin R, Weiss K, Zaccai G (2008) New sources and instrumentation for neutrons in biology. Chem Phys 345(2–3):133–151Google Scholar
  40. 40.
    Dellerue S, Bellissent-Funel MC (2000) Relaxational dynamics of water molecules at protein surface. Chem Phys 258(2-3):315–325Google Scholar
  41. 41.
    Gabel F, Bellissent-Funel MC (2007) C-phycocyanin hydration water dynamics in the presence of trehalose: an incoherent elastic neutron scattering study at different energy resolutions. Biophys J 92(11):4054–4063Google Scholar
  42. 42.
    Wood K, Frolich A, Paciaroni A, Moulin M, Hartlein M, Zaccai G, Tobias DJ, Weik M (2008) Coincidence of dynamical transitions in a soluble protein and its hydration water: direct measurements by neutron scattering and MD simulations. J Am Chem Soc 130(14):4586–4587Google Scholar
  43. 43.
    Doster W (2010) The protein-solvent glass transition. Biochimica Et Biophysica Acta-Proteins and Proteomics 1804(1):3–14Google Scholar
  44. 44.
    Zanotti JM, Gibrat G, Bellissent-Funel MC (2008) Hydration water rotational motion as a source of configurational entropy driving protein dynamics. Crossovers at 150 and 220 K. Phys Chem Chem Phys 10(32):4865–4870Google Scholar
  45. 45.
    Wood K, Plazanet M, Gabel F, Kessler B, Oesterhelt D, Tobias DJ, Zaccai G, Weik M (2007) Coupling of protein and hydration-water dynamics in biological membranes. Proc Natl Acad Sci USA 104(46):18049–18054Google Scholar
  46. 46.
    Wood K, Plazanet M, Gabel F, Kessler B, Oesterhelt D, Zaccai G, Weik M (2008) Dynamics of hydration water in deuterated purple membranes explored by neutron scattering. Eur Biophys J 37(5):619–626Google Scholar
  47. 47.
    Weik M, Lehnert U, Zaccai G (2005) Liquid-like water confined in stacks of biological membranes at 200 K and its relation to protein dynamics. Biophys J 89(5):3639–3646Google Scholar
  48. 48.
    Berntsen P, Bergman R, Jansson H, Weik M, Swenson J (2005) Dielectric and calorimetric studies of hydrated purple membrane. Biophys J 89(5):3120–3128Google Scholar
  49. 49.
    Frolich A, Gabel F, Jasnin M, Lehnert U, Oesterhelt D, Stadler AM, Tehei M, Weik M, Wood K, Zaccai G (2009) From shell to cell: neutron scattering studies of biological water dynamics and coupling to activity. Faraday Discuss 141:117–130; discussion 175–207Google Scholar
  50. 50.
    Tehei M, Franzetti B, Madern D, Ginzburg M, Ginzburg BZ, Giudici-Orticoni MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Rep 5(1):66–70Google Scholar
  51. 51.
    Jasnin M, Moulin M, Haertlein M, Zaccai G, Tehei M (2008) Down to atomic-scale intracellular water dynamics. EMBO Rep 9(6):543–547Google Scholar
  52. 52.
    Pollack GH, Cameron IL, Wheatley DN (2006) Water and the cell. Springer, Dordrecht, The NetherlandsGoogle Scholar
  53. 53.
    Tehei M, Franzetti B, Wood K, Gabel F, Fabiani E, Jasnin M, Zamponi M, Oesterhelt D, Zaccai G, Ginzburg M, Ginzburg BZ (2007) Neutron scattering reveals extremely slow cell water in a dead sea organism. Proc Natl Acad Sci USA 104(3):766–771Google Scholar
  54. 54.
    Stadler AM, Embs JP, Digel I, Artmann GM, Unruh T, Buldt G, Zaccai G (2008) Cytoplasmic water and hydration layer dynamics in human red blood cells. J Am Chem Soc 130(50):16852–16853Google Scholar
  55. 55.
    Jasnin M (2009) Atomic-scale dynamics inside living cells explored by neutron scattering. J R Soc Interface 6(Suppl 5):S611–S617Google Scholar
  56. 56.
    Ball P (2008) Water: an eduring mystery. Nature 452(7185):291–292Google Scholar
  57. 57.
    Halle B (2004) Protein hydration dynamics in solution: a critical survey. Philos Trans R Soc Lond B Biol Sci 359(1448):1207–1223; discussion 1223–1204, 1323–1208Google Scholar
  58. 58.
    Li T, Hassanali AA, Kao YT, Zhong D, Singer SJ (2007) Hydration dynamics and time scales of coupled water-protein fluctuations. J Am Chem Soc 129(11):3376–3382Google Scholar
  59. 59.
    Born B, Kim SJ, Ebbinghaus S, Gruebele M, Havenith M (2009) The terahertz dance of water with the proteins: the effect of protein flexibility on the dynamical hydration shell of ubiquitin. Faraday Discuss 141:161–173; discussion 175–207Google Scholar
  60. 60.
    Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Jansson H, McMahon BH, Stroe IR, Swenson J, Young RD (2009) A unified model of protein dynamics. Proc Natl Acad Sci USA 106(13):5129–5134Google Scholar
  61. 61.
    Rupley JA, Siemankowski L, Careri G, Bruni F (1988) Two-dimensional protonic percolation on lightly hydrated purple membrane. Proc Natl Acad Sci USA 85(23):9022–9025Google Scholar
  62. 62.
    Doster W, Gutberlet T (2010) Protein-water interactions. Biochimica Et Biophysica Acta-Proteins and Proteomics 1804(1):1–242Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biophysical ChemistryUniversity of GroningenGroningenThe Netherlands
  2. 2.Bragg InstituteAustralian Nuclear Science and Technology OrganisationMenaiAustralia
  3. 3.Institut de Biologie StructuraleGrenobleFrance

Personalised recommendations