Future Perspectives: Moving to Longer Length and Time Scales, from Polymers to Biological Macromolecules

  • Dieter RichterEmail author
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


The chapter starts by revising the basic ingredients of large-scale dynamics in polymers. The Rouse model and the reptation model are discussed, alluding to some of the limitations of the former, with regard to chain interactions that are neglected. Then the molecular foundations of rheology are addressed, in particular the contour length fluctuation (CLF) mechanism including chain retraction, which is the basis for the hierarchical relaxation in branched polymers. From simple polymers, the chapter moves to discuss the dynamics in systems of increasing complexity using three examples. The first relates to the dynamics of a soft interface in a polymeric mesophase, specifically to undulation dynamics of a lamellar phase. Then, the issue of confinement is discussed on the example of the random confinement that is created in a polymer blend with components of very different glass transition temperatures. In this case, the high Tg component creates a random frozen matrix that confines the fast component. Finally, protein diffusion in polymeric gels is considered. In some way, this mimics the motion of proteins in crowded environments. The last part of the chapter discusses some novel developments regarding the large-scale dynamics in proteins, such as domain motion. These dynamics are shown to be crucial for biological function. The chapter ends with an extended outlook of the possible directions of neutron research in the field of macromolecular dynamics.


Dynamic Structure Factor Generalize Langevin Equation Rouse Model Rouse Time Rouse Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Edwards SF, Grant JWV (1973) The effect of entanglements of diffusion in a polymer melt. J Phys A 6:1169CrossRefGoogle Scholar
  3. 3.
    Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 1 – Brownian motion in the equilibrium state. J Chem Soc Faraday Trans 2 74:1789; Dynamics of concentrated polymer systems. Part 2 – Molecular motion under flow. J Chem Soc Faraday Trans 2 74:1802; Dynamics of concentrated polymer systems. Part 3 – The constitutive equation. J Chem Soc Faraday Trans 2 74:1818Google Scholar
  4. 4.
    de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572CrossRefGoogle Scholar
  5. 5.
    Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJE (2005) Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy. PNAS 102:17646CrossRefGoogle Scholar
  6. 6.
    Biehl R, Hoffmann B, Monkenbusch M, Falus P, Preost S, Merkel R, Richter D (2008) Direct observation of correlated domain interdomain motion in alcoholdehydrogenase. Phys Rev Lett 101:138102CrossRefGoogle Scholar
  7. 7.
    Richter D, Monkenbusch AA, Colmenero J (2005) Neutron spin echo in polymer systems. Adv Polymer Sci 174:1–221Google Scholar
  8. 8.
    Rouse PR (1953) A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21:1272CrossRefGoogle Scholar
  9. 9.
    de Gennes PG (1967) Quasi-elastic scattering of neutrons by dilute polymer solutions. I. Free-draining limit. Physics (USA) 3:37Google Scholar
  10. 10.
    Wischnewski A, Monkenbusch M, Willner L, Richter D, Farago B, Kali G (2003) Direct observation of the transition from free to constrained segment motion in entangled polymer melts. Phys Rev Lett 90:058302CrossRefGoogle Scholar
  11. 11.
    Montes H, Monkenbusch M, Willner L, Rathgeber S, Fetters LJ, Richter D (1999) Neutron spin echo investigation of concentration fluctuation dynamics in melts of diblock copolymer. J Chem Phys 110:10188CrossRefGoogle Scholar
  12. 12.
    Richter D, Farago B, Fetters LJ, Huang JS, Ewen B, Lartigue C (1990) Direct microscopic observation of the entanglement distance in a polymer melt. Phys Rev Lett 64:1389CrossRefGoogle Scholar
  13. 13.
    Butera R, Fetters LJ, Huang JS, Richter D, Pyckhout-Hintzen W, Zirkel A, Farago B, Ewen B (1991) Microscopic- and macroscopic evaluation of fundamental facets of the entanglement concept. Phys Rev Lett 66:2088CrossRefGoogle Scholar
  14. 14.
    Schleger P, Farago B, Lartigue C, Kollmar A, Richter D (1998) Clear evidence of reptation in polyethylene from neutron spin echo spectroscopy. Phys Rev Lett 81:124CrossRefGoogle Scholar
  15. 15.
    de Gennes PG (1981) Coherent scattering by one reptating chain. J Phys (Paris) 42:735CrossRefGoogle Scholar
  16. 16.
    Fatkullin N, Kimmich R (1995) Theory of field-gradient NMR diffusometry of polymer segment displacements in the tube-reptation model. Phys Rev E 52:3273CrossRefGoogle Scholar
  17. 17.
    Zamponi M, Wischnewski A, Monkenbusch M, Willner L, Richter D, Falus P, Farago B, Guenza MG (2008) Cooperative dynamics in homopolymer melts: a comparison of theoretical predictions with neutron spin echo experiments. J Phys Chem B 112:16220CrossRefGoogle Scholar
  18. 18.
    Guenza MG (2003) Cooperative dynamics in semiflexibile unentangled polymer fluids. J Chem Phys 119:7568CrossRefGoogle Scholar
  19. 19.
    Likhtman AE, McLeish TCB (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332CrossRefGoogle Scholar
  20. 20.
    Zamponi M, Monkenbusch M, Willner L, Wischnewski A, Farago B, Richter D (2005) Contour length fluctuations in polymer melts: a direct molecular proof. Europhys Lett 72:1039CrossRefGoogle Scholar
  21. 21.
    Wischnewski A, Monkenbusch M, Willner L, Richter D, Likhtman AE, McLeish TCB, Farago B (2002) Molecular observation of contour length fluctuations limiting topological confinement in polymer melts. Phys Rev Lett 88:058301CrossRefGoogle Scholar
  22. 22.
    McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51:1379CrossRefGoogle Scholar
  23. 23.
    Lodge T (1999) Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Phys Rev Lett 83:3218CrossRefGoogle Scholar
  24. 24.
    Millner ST, McLeish TCB (1998) Reptation and contour-length fluctuations in melts of linear polymers. Phys Rev Lett 81:725CrossRefGoogle Scholar
  25. 25.
    Zamponi M, Wischnewski A, Monkenbusch M, Willner L, Richter D, Likhtman AE, Kali G, Farago B (2006) Molecular observation of constraint release in polymer melts. Phys Rev Lett 96:238302CrossRefGoogle Scholar
  26. 26.
    Graham RS, Likhtman AE, McLeish TCB, Millner ST (2003) Microscopic theory of linear, entangled polymer chains under rapid deformation including chain stretch and convective constraint release. J Rheol (New York) 47:1171Google Scholar
  27. 27.
    Blanchard A, Graham RS, Heinrich M, Pyckhout-Hintzen W, Richter D, Likhtman AE, McLeish TCB, Read DJ, Straube E, Kohlbrecher J (2005) Small angle neutron scattering observation of chain retraction after a large step deformation. Phys Rev Lett 95:166001CrossRefGoogle Scholar
  28. 28.
    Warner M, Edwards SF (1978) Neutron scattering from strained polymer networks. J Phys A 11:1649CrossRefGoogle Scholar
  29. 29.
    Heinrich M, Pyckhout-Hintzen W, Allgaier J, Richter D, Straube E, Read DJ, McLeish TCB, Groves DJ, Blackwell RJ, Wiedenmann A (2002) Arm relaxation in deformed H-polymers in elongational flow by SANS. Macromolecules 35:6650CrossRefGoogle Scholar
  30. 30.
    Montes H, Monkenbusch M, Willner L, Rathgeber S, Richter D, Fetters LJ, Farago B (2002) Direct observation of domain wall excitations in symmetric diblock copolymer melts at and above the order disorder transition. Europhys Lett 58:389CrossRefGoogle Scholar
  31. 31.
    Helfand E, Wassermann ZR (1976) Block copolymer theory. 4. Narrow interphase approximation. Macromolecules 9:879Google Scholar
  32. 32.
    Lutz TR, He Y, Ediger MD, Ca H, Ling G, Jones AA (2003) Rapid poly(ethylene oxide) segmental dynamics in blends with poly(methyl methacrylate). Macromolecules 36:1724CrossRefGoogle Scholar
  33. 33.
    Niedzwiedz K (2007) Polymer dynamics in miscible polymer blends. PhD Thesis, University of Mnster/GermanyGoogle Scholar
  34. 34.
    Niedzwiedz K, Wischnewski A, Monkenbusch M, Richter D, Genix AC, Arbe A, Colmenero J, Strauch M, Straube A (2007) Polymer chain dynamics in a random environment: heterogeneous mobilities. Phys Rev Lett 98:168301CrossRefGoogle Scholar
  35. 35.
    Akcasu AZ (1993) In: Brown W (ed) Dynamic light scattering, the method and some application. Clarendon, OxfordGoogle Scholar
  36. 36.
    Haley JC, Lodge TP (2005) Dynamics of a poly(ethylene oxide) tracer in a poly(methyl methacrylate) matrix: remarkable decoupling of local and global motions. J Chem Phys 122:234914CrossRefGoogle Scholar
  37. 37.
    Moreno AJ, Colmenero J (2006) Anomalous dynamic arrest in a mixture of large and small particles. Phys Rev E 74:021409; Relaxation scenarios in a mixture of large and small spheres: dependence on the size disparity. J Chem Phys 125:164507CrossRefGoogle Scholar
  38. 38.
    Biehl R, Guo X, Prud’homme PK, Monkenbusch M, Allgaier J, Richter D (2004) Diffusion of compact macromolecules through polymer meshes: mesh dynamics and probe dynamics. Physica B 350:76CrossRefGoogle Scholar
  39. 39.
    Cheng Y, Prud’homme PK, Thomas JL (2002) Diffusion of mesoscopic probes in aqueous polymer solutions measured by fluorescence recovery after photobleaching. Macromolecules 35:8111CrossRefGoogle Scholar
  40. 40.
    Schotte F, Lim M, Jackson T, Smirnov AV, Sonan J, Olsen JS, Phillips GN Jr, Wulff M, Aninfrud PA (2003) Watching a protein as it functions with 150-ps time-resolved X-ray crystallography. Science 300:1944CrossRefGoogle Scholar
  41. 41.
    Haran G, Haas E, Szipkowska BK, Mas MT (1992) Domain motions in phosphoglycerate kinase: determination of interdomain distance distributions by site-specific labeling and time-resolved fluorescence energy transfer. Proc Natl Acad Sci (USA) 89:11764CrossRefGoogle Scholar
  42. 42.
    de la Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719CrossRefGoogle Scholar
  43. 43.
    Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905CrossRefGoogle Scholar
  44. 44.
    Luo J, Bruice TC (2007) Low-frequency normal modes in horse liver alcohol dehydrogenase and motions of residues involved in the enzymatic reaction. Biophys Chem 126:80CrossRefGoogle Scholar
  45. 45.
    Marshall BT, Sarangapani KK, Wu J, Lawrence MB, McEver RP, Zhu C (2006) Measuring molecular elasticity by atomic force microscope cantilever fluctuations. Biophys J 90:681CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institut für FestkörperforschungJülichGermany

Personalised recommendations