Shear Dynamics: Understanding Boundary Slip and Anomalies in the Structural and Dynamical Properties of Liquids Under Flow

  • Max WolffEmail author
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Bulk liquids are characterized by an isotropic structure with short range correlations. For a static liquid, and at the boundaries, ordering is induced depending critically on the properties of the interface as well as on the topology. For liquids in motion, matters are more complicated. Shear impinges anisotropy and may induce ordering or inhomogeneities in the volume as well as close to the solid interface. This chapter summarizes recent experimental results on structural and dynamical investigations of liquids under flow (including engine oil, polymers and micelles), using a number of different neutron scattering techniques. The combination of diffraction and spectroscopy with surface sensitivity gives direct information to help us relate flow to structure and diffusivity in the region very near to the surface. Future perspectives on the use of grazing incident scattering techniques are discussed.


Surface Slip Critical Angle Slip Length Small Angle Neutron Scattering Transmission Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges financial support of the DFG (MA801/12-2 and ZA161/18-2) within the priority program (SPP) 1164 and the BMBF (ADAM 03ZA7BOC). The author wants to thank Bernhard Frick for the excellent support during the measurements on IN16 and him as well as Andreas Magerl and Hartmut Zabel for fruitful discussions. Additionally, thanks to Nicole Voss for her help in finalizing the manuscript.


  1. 1.
    Special section on water in confined geometries (2004) J Phys Condens Matter 16(45). Institute of Physics and IOP Publishing LimitedGoogle Scholar
  2. 2.
    Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (2006) Effects of confinement on freezing and melting. J Phys Condens Matter 18:R15CrossRefGoogle Scholar
  3. 3.
    Almdal K, Bates FS, Mortensen K (1992) Order, disorder, and fluctuation effects in an asymmetric poly(ethylene-propylene)-poly(ethylethylene) diblock copolymer. J Chem Phys 96:9122CrossRefGoogle Scholar
  4. 4.
    Anastasiadis SH, Russel TP, Satija SK, Majkrzak CF (1989) Neutron reflectivity studies of the surface-induced ordering of diblock copolymer films. Phys Rev Lett 62:1852CrossRefGoogle Scholar
  5. 5.
    Baalss D, Hess S (1986) Nonequilibrium molecular-dynamics studies on the anisotropic viscosity of perfectly aligned nematic liquid crystals. Phys Rev Lett 57(1):86–89CrossRefGoogle Scholar
  6. 6.
    Barrat J, Bocquet L (1999) Influence of wetting properties on hydrodynamic boundary conditions at a fluid-solid interface. Faraday Discussions pp 119–127Google Scholar
  7. 7.
    Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82(23):4671–4674CrossRefGoogle Scholar
  8. 8.
    Bauer T, Oberdisse J, Ramos L (2006) Collective rearrangement at the onset of flow of a polycrystalline hexagonal columnar phase. Phys Rev Lett 97:258,303Google Scholar
  9. 9.
    Bee M (1988) Quasielastic neutron scattering. Hilger, BristolGoogle Scholar
  10. 10.
    Berret JF, Gamaz-Corrales R, Oberdisse J, Walker LM, Lindner P (1998) Flow-structure relationship of shear-thickening surfactant solutions. Europhys Lett 41:677CrossRefGoogle Scholar
  11. 11.
    Bocquet L, Barrat JL (2007) Flow boundary conditions: from nano- to micro-scales. Soft Matter 3:685CrossRefGoogle Scholar
  12. 12.
    Boue F, Lindner P (1994) Semi-dilute polymer solutions under shear. Europhys Lett 25:421CrossRefGoogle Scholar
  13. 13.
    Bouwman WG, Kruglov TV, Plomp J, Rekveldt MT (2005) Spin-echo methods for SANS and neutron reflectometry. Phys B 357:66CrossRefGoogle Scholar
  14. 14.
    Bhushan B, Israelachvili J, Landman U (1995) Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:607CrossRefGoogle Scholar
  15. 15.
    Campbell SE, Luengo G, Srdanov VI, Wudl F, Israelachvili J (1996) Very low viscosity at the solid-liquid interface by adsorbed C60 monolayers. Nature 382:520–522CrossRefGoogle Scholar
  16. 16.
    Cipelletti L, Ramos L (2005) Slow dynamics in glassy soft matter. J Phys Condens Matter 17:R253CrossRefGoogle Scholar
  17. 17.
    Cottin-Bizonne C, Cross B, Steinberger A, Charlaix E (2005) Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys Rev Lett 94:056102CrossRefGoogle Scholar
  18. 18.
    Craig V, Neto C, Williams D (2001) Shear-dependent boundary slip in an aqueous newtonian liquid. Phys Rev Lett 87(5):054,504CrossRefGoogle Scholar
  19. 19.
    Debye P, Cleland RL (1959) Flow of liquid hydrocarbons in porous Vycor. J Appl Phys 30:843CrossRefGoogle Scholar
  20. 20.
    Diat O, Roux D, Nallet F (1993) Effect of shear on a lyotropic lamellar phase. J Phys II France 3(9):1427–1452CrossRefGoogle Scholar
  21. 21.
    Diat O, Porte G, Berret JF (1996) Orientation and twins separation in a micellar cubic crystal under oscillating shear. Phys Rev B 54(21):14,869–14,872CrossRefGoogle Scholar
  22. 22.
    Doshi D, Watkins E, Israelachvili J, Majewski J (2005) Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc Natl Acad Sci USA 102(27):9458–9462CrossRefGoogle Scholar
  23. 23.
    Dowson D (1979) History of tribology. Longmans, New YorkGoogle Scholar
  24. 24.
    Drummond, Alcantar L, Israelachvili J (2002a) Shear alignment of confined hydrocarbon liquid films. Phys Rev E 66:011705CrossRefGoogle Scholar
  25. 25.
    Drummond C, Alcantar N, Israelachvili J (2002b) Shear alignment of confined hydrocarbon liquid films. Phys Rev E 66:1–6CrossRefGoogle Scholar
  26. 26.
    Eiser E, Molino F, Porte G, Diat O (2000) Nonhomogeneous textures and banded flow in a soft cubic phase under shear. Phys Rev E 61(6):6759–6764CrossRefGoogle Scholar
  27. 27.
    Engemann S, Reichert H, Dosch H, Bilgram J, Honkimaeki V, Snigirev A (2004) Interfacial melting of ice in contact with SiO2. Phys Rev Lett 92:205,701CrossRefGoogle Scholar
  28. 28.
    Escalante J, Gradzielski M, Hoffmann H, Mortensen K (2000) Shear-induced transition of originally undisturbed lamellar phase to vesicle phase. Langmuir 16(23):8653–8663.CrossRefGoogle Scholar
  29. 29.
    Faber TE (1995) Fluid dynamics for physicists. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  30. 30.
    Feynman R (1965) Lectures on Physics. Addison Weseley Publishing Company, Reading, MA, USAGoogle Scholar
  31. 31.
    Förster S, Konrad M, Lindner P (2005) Shear thinning and orientational ordering of wormlike micelles. Phys Rev Lett 94:017803CrossRefGoogle Scholar
  32. 32.
    Fredrickson GH (1987) Surface ordering phenomena in block copolymer melts. Macromolecules 20:2535CrossRefGoogle Scholar
  33. 33.
    Frick B, Gonzales M (2001) Five years operation of the second generation backscattering spectrometer IN16-a retrospective developments and plans. Physica B 301:8CrossRefGoogle Scholar
  34. 34.
    Frick B, Koza M, Zorn R (eds) (2003) The Euro Phys J E: Special Issue: Dynamics in Confinement. EDP SciencesGoogle Scholar
  35. 35.
    Galea TM, Attard P (2004) Molecular dynamics study of the effect of atomic roughness on the slip length at the fluid-solid boundary during shear flow. Langmuir 20(8):3477–3482.CrossRefGoogle Scholar
  36. 36.
    Georgii R, Böni P, Janoschek M, Schanzer C, Valloppilly S (2007) MIRA-A Flexible Instrument for VCN. Physica B 397:150CrossRefGoogle Scholar
  37. 37.
    Gupta SA, Cochran HD, Cummings PT (1997) Shear behavior of squalane and tetracosane under extreme confinement. II. Confined film structure. J Chem Phys 107:10,327Google Scholar
  38. 38.
    Gutfreund P, Wolff M, Gerth S, Hies A, Magerl A, Zabel H (2009a) Institut laue-langevin, exp. report no.: Test-1566, 6-02-436Google Scholar
  39. 39.
    Gutfreund P, Wolff M, Zabel H (2009b) Institut laue-langevin, exp. report no.: 6-02-452Google Scholar
  40. 40.
    Gutfreund P, Wolff M, Maccarini M, Gerth S, Ankner JF, Browning J, Halbert CE, Wacklin H, Zabel H (2011) Depletion at solid-liquid interfaces: flowing hexadecane on functionalized surfaces. J Chem Phys 134:064711CrossRefGoogle Scholar
  41. 41.
    Hamilton WA, Butler PD, Baker SM, Smith GS, Hayter JB, Magid LJ, Pynn R (1994) Shear-induced hexagonal ordering observed in an ionic viscoelastic fluid in flow past a surface. Phys Rev Lett 72(14):2219–2222CrossRefGoogle Scholar
  42. 42.
    Hamilton WA, Butler PD, Magit LJ, Han Z, Slawecki TM (1999) Fast relaxation of a hexagonal Poiseuille shear-induced near-surface phase in a threadlike micellar solution. Phys Rev E 60:R1146CrossRefGoogle Scholar
  43. 43.
    Hanley HJM, Rainwater J, Hess S (1987) Shear-induced angular dependence of the liquid pair correlation function. Phys Rev A 36(4):1795–1802CrossRefGoogle Scholar
  44. 44.
    Huang DM, Sendner C, Horinek D, Netz RR, Bocquet L (2008) Water slippage versus contact angle: a quasiuniversal relationship. Phys Rev Lett 101:226,101Google Scholar
  45. 45.
    Huang E, Russell TP, Harrison C, Chaikin TM, Register RA, Hawker CJ, Mays J (1996) Using surface active random copolymers to control the domain orientation in diblock copolymer thin films. Macromolecules 31:7641CrossRefGoogle Scholar
  46. 46.
    Israelachvili J (1991) Intermolecular and surface forces. Academic Press, LondonGoogle Scholar
  47. 47.
    Jaehnert S, Chavez FV, Schaumann GE, Schreiber A, Schoenhoff M, Findenegg GH (2008) Melting and freezing of water in cylindrical silica nanopores. Phys Chem Chem Phys 10:6039CrossRefGoogle Scholar
  48. 48.
    Jones RAL, Kramer EJ, Rafailovich MH, Sokolov J, Schwarz SA (1989) Surface enrichment in an isotopic polymer blend. Phys Rev Lett 62:280CrossRefGoogle Scholar
  49. 49.
    Joseph P, Cottin-Bizonne C, Benoît JM, Ybert C, Journet C, Tabeling P, Bocquet L (2006) Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys Rev Lett 97(15):4CrossRefGoogle Scholar
  50. 50.
    Kataoka DE, Troian SM (1999) Patterning liquid flow on the microscopic scale. Nature 402:794CrossRefGoogle Scholar
  51. 51.
    Keller A, Pedemonte E, Willmouth FM (1970) Macro-lattice from segregated amorphous phases of a three block copolymer. Nature 225:538CrossRefGoogle Scholar
  52. 52.
    Kellogg GJ, Walton DG, Mayes AM, Lambooy P, Russel TP, Gallagher PD, Satija SK (1996) Observed surface energy effects in confined diblock copolymers. Phys Rev Lett 76:2503CrossRefGoogle Scholar
  53. 53.
    Kittaka S, Ishimaru S, Kuranishi M, Matsuda T, Yamaguchi T (2006) Enthalpy and interfacial free energy changes of water capillary condensed in mesoporous silica, MCM-41 and SBA-15. Phys Chem Chem Phys 8(3223)Google Scholar
  54. 54.
    Klein J, Kumacheva E, Mahalu D, Parahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636CrossRefGoogle Scholar
  55. 55.
    Koenig S, Pfeiffer W, Bayerl T, Richter D, Sackmann E (1992) Molecular dynamics of lipid bilayers studied by incoherent quasielastic neutron scattering. J Phys II 2:1589Google Scholar
  56. 56.
    Koenig S, Sackmann E, Richter D, Zorn R, Carlile C, Bayerl T (1994) Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J Chem Phys 100:3307CrossRefGoogle Scholar
  57. 57.
    Koenig S, Bayerl T, Coddens G, Richter D, Sackmann E (1995) Hydration dependence of chain dynamics and local diffusion in l-a-dipalmitoylphosphtidylcholine multilayers studied by incoherent quasi-elastic neutron scattering. Biophys J 68:1871–1880CrossRefGoogle Scholar
  58. 58.
    Krim J (1996) Friction at the Atomic Scale. Sci Am 275:74–80CrossRefGoogle Scholar
  59. 59. (accessed on 28 November 2011)
  60. 60.
    Lauga E, Brenner MP, Stone HA (2005) Microfluidics: the no-slip boundary condition. Springer. In: Foss J, Tropea C, Yarin A (eds) Ch. 15 in Handbook of Experimental Fluid Dynamics. Springer, New-YorkGoogle Scholar
  61. 61.
    Loewen H (1994) Melting, freezing and colloidal suspensions. Phys Rep 237:249CrossRefGoogle Scholar
  62. 62.
    Loose W, Ackerson BJ (1994) Model calculations for the analysis of scattering data from layered structures. J Chem Phys 101(9):7211–7220CrossRefGoogle Scholar
  63. 63.
    Maccarini M, Steitz R, Himmelhaus M, Fick J, Tatur S, Wolff M, Grunze M, Janecek J, Netz RR (2007a) Density depletion at solid-liquid interfaces: a neutron reflectivity study. Langmuir 23(2):598–608CrossRefGoogle Scholar
  64. 64.
    Maccarini M, Steitz R, Himmelhaus M, Fick J, Tatur S, Wolff M, Grunze M, Janecek J, Netz RR (2007b) Density depletion at solid-liquid interfaces: a neutron reflectivity study. Langmuir 23:598–608CrossRefGoogle Scholar
  65. 65.
    Magerl A, Zabel H, Frick B, Lindner P (1999) Flow dynamics of sheared liquids explored by inelastic neutron scattering. Appl Phys Lett 74:3474CrossRefGoogle Scholar
  66. 66.
    Major J, Dosch H, Felcher GP, Habicht K, Keller T, te Velthuis SGE, Vorobiev A, Wahl M (2003) Combining of neutron spin echo and reflectivity: a new technique for probing surface and interface order. Physica B 336:8CrossRefGoogle Scholar
  67. 67.
    Malardier-Jugroot C, Head-Gordon T (2007) Separable cooperative and localized translational motions of confined water. Phys Chem Chem Phys 9:1962–1971CrossRefGoogle Scholar
  68. 68.
    McLeish TCB, Allgeier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottier B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN (1999) Dynamics of entangled H-polymers: theory, rheology, and neutron-scattering. Macromolecules 32:6734CrossRefGoogle Scholar
  69. 69.
    Mezger M, Reichert H, Schoeder S, Okasinski J, Schroeder H, Dosch H, Palms D, Ralston J, Honkimaki V (2006) High-resolution in situ x-ray study of the hydrophobic gap at the water–octadecyl–trichlorosilane interface. Proc Natl Acad Sci USA 103(49):18401–18404CrossRefGoogle Scholar
  70. 70.
    Mills R (1973) Self-diffusion in normal and heavy-water in range 1-45 degrees. J Phys Chem 77:685CrossRefGoogle Scholar
  71. 71.
    Morfin I, Lindner P, Boue F (1999) Temperature and shear rate dependence of small angle neutron scattering from semidilute polymer solutions. Macromolecules 32:7208CrossRefGoogle Scholar
  72. 72.
    Morishige K, Iwasaki H (2003) X-ray study of freezing and melting of water confined within SBA-15. Langmuir 19:2808CrossRefGoogle Scholar
  73. 73.
    Morishige K, Uematsu H (2005) The proper structure of cubic ice confined in mesopores. J Chem Phys 122:044711CrossRefGoogle Scholar
  74. 74.
    Mueller-Buschbaum P, Gutmann JS, Cubitt R, Petry W (2004) Grazing incidence small-angle neutron scattering-an advanced scattering technique for the investigation of nanostructured polymer films. Physica B 350:207CrossRefGoogle Scholar
  75. 75.
    Mueller-Buschbaum P, Metwalli E, Moulin JF, Kudryashov V, Haese-Seilller M, Kampmann R (2009) Time of flight grazing incidence small angle neutron scattering - A novel scattering technique for the investigation of nanostructured polymer films. Eur Phys J Special Topics 167:107CrossRefGoogle Scholar
  76. 76.
    Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68(12):2859–2897CrossRefGoogle Scholar
  77. 77.
    Oberdisse J, Harrak AEE, Carrot G, Jestin J, Boue F (2005) Structure and rheological properties of soft-hard nanocomposites: influence of aggregation and interfacial modification. Polymer 46:6695CrossRefGoogle Scholar
  78. 78.
    Olmsted PD (2008) Perspectives on shear banding in complex fluids. Rheol Acta 47:283–300CrossRefGoogle Scholar
  79. 79.
    Parratt LG (1954) Surface studies of solids by total reflection of x-rays. Phys Rev 95:359–369CrossRefGoogle Scholar
  80. 80.
    Persson BNJ (1993) Theory of friction and boundary lubrication. Phys Rev B 48:18140CrossRefGoogle Scholar
  81. 81.
    Persson BNJ (1998) Sliding Friction. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  82. 82.
    Pfeiffer W, Henkel T, Sackmann E, Knorr W (1989) Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Europhys Lett 8:201CrossRefGoogle Scholar
  83. 83.
    Pfeiffer W, Henkel T, Sackmann E, Knorr W (1993) Neutron spin echo study of membrane undulations in lipid multibilayers. Europhys Lett 23:457CrossRefGoogle Scholar
  84. 84.
    Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85(5):980–983CrossRefGoogle Scholar
  85. 85.
    Plomp J, de Haan VO, Delgliesh RM, Langridge S, Well AA (2007) Neutron spin-echo labelling at offspec, an ISIS second target station project. Thin Solid Films 515:5732CrossRefGoogle Scholar
  86. 86.
    Rekveldt MT (1997) Neutron reflectometry and SANS by neutron spin echo. Physica B 234:1135CrossRefGoogle Scholar
  87. 87.
    Rheinstaedter MC, Ollinger C, Fragneto G, Demmel F, Salditt T (2004) Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett 93:108107CrossRefGoogle Scholar
  88. 88.
    Rheinstaedter MC, Seydel T, Demmel F, Salditt T (2005) Molecular motions in lipid bilayers studied by the neutron backscattering technique. Phys Rev E 71:061908CrossRefGoogle Scholar
  89. 89.
    Rheinstaedter MC, Seydel T, Haeussler W, Salditt T (2006) Exploring the collective dynamics of lipid membranes with inelastic neutron scattering. J Vacuum Sci Tech A 24:1191CrossRefGoogle Scholar
  90. 90.
    Sandrin L, Manneville S, Fink M (2001) Ultrafast two-dimensional ultrasonic speckle velocimetry: a tool in flow imaging. Appl Phys Lett 78(8):1155–1157CrossRefGoogle Scholar
  91. 91.
    Schmatko T, Hervet H, Leger L (2005a) Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys Rev Lett 94:244501CrossRefGoogle Scholar
  92. 92.
    Schmatko T, Hervet H, Leger L (2005b) Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys Rev Lett 94:980–983CrossRefGoogle Scholar
  93. 93.
    Schmidt G, Nakatani AI, Butler PD, Karim A, Han CH (2000) Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33:7219CrossRefGoogle Scholar
  94. 94.
    Schmidt R, Hansen EW, Stoecker M, Akporiaye D, Ellestad OH (1995) Pore size determination of MCM-51 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A Preliminary Study. J Am Chem Soc 117:4049CrossRefGoogle Scholar
  95. 95.
    Schreiber A, Ketelsen I, Findenegg GH (2001) Melting and freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys 3:1185CrossRefGoogle Scholar
  96. 96.
    Schwartz JA, Vykoukal JV, Gascoyne PRC (2004) Droplet-based chemistry on a programmable micro-chip. Lab on a chip 4:11CrossRefGoogle Scholar
  97. 97.
    Schwarzl JF, Hess S (1986) Shear-flow-induced distortion of the structure of a fluid: Application of a simple kinetic equation. Phys Rev A 33(6):4277–4283CrossRefGoogle Scholar
  98. 98.
    Sears VF (1989) Neutron optics: An introduction to the theory of neutron optical phenomena and their applications. Oxford University Press Inc, USAGoogle Scholar
  99. 99.
    Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz RR, Horinek D (2008) Water at polar and nonpolar solid walls (Review). Biointerphases 3:FC23CrossRefGoogle Scholar
  100. 100.
    Seo Y, Satija S (2006) No intrinsic depletion layer on a polystyrene thin film at a water interface. Langmuir 22(17):7113–7116CrossRefGoogle Scholar
  101. 101.
    Singer IL, Pollock HM (eds) (1992) Fundamentals of friction: macroscopic and microscopic processes. Kluwer, DordrechtGoogle Scholar
  102. 102.
    Steitz R, Gutberlet T, Hauss T, Klosgen B, Krastev R, Schemmel S, Simonsen A, Findenegg G (2003) Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19(6):2409–2418CrossRefGoogle Scholar
  103. 103.
    Sun G, Bonaccurso E, Franz V, Butt H (2002) Confined liquid: simultaneous observation of a molecularly layered structure and hydrodynamic slip. J Chem Phys 117:10311–10314CrossRefGoogle Scholar
  104. 104.
    Tabor D (1973) Friction. Doubleday, New YorkGoogle Scholar
  105. 105.
    Takahara S, Sumiyama N, Kittaka S, Yamaguchi T, Bellissent-Funnel M (2005) Neutron scattering study on dynamics of water molecules in MCM-41. 2. Determination of translational diffusion coefficient. J Phys Chem B 109:11,231CrossRefGoogle Scholar
  106. 106.
    Thompson PA, Troian S (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389(6649):360–362CrossRefGoogle Scholar
  107. 107.
    Thorsen T, Maerkel SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580Google Scholar
  108. 108.
    Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Physics of Fluids 16(5):1509–1515CrossRefGoogle Scholar
  109. 109.
    Tyrrell J, Attard P (2001) Images of nanobubbles on hydrophobic surfaces and their interactions. 87:176104Google Scholar
  110. 110.
    Urbakh M, Klafter J, Goudon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430:525Google Scholar
  111. 111.
    Vinogradova O (1995) Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6):2213CrossRefGoogle Scholar
  112. 112.
    Walz M, Falus P, Wolff M, Voss N, Zabel H, Magerl A (2007) Institut laue-langevin, exp. report no.: 9-11-1269, 9-11-1322, 9-11-1354Google Scholar
  113. 113.
    Wolff M, Magerl A, Hock R, Frick B, Zabel H (2002) Investigation of sheared liquids by neutron backscattering and reflectivity. Appl Phys A A74:374CrossRefGoogle Scholar
  114. 114.
    Wolff M, Magerl A, Frick B, Zabel H (2003a) Quasielastic neutron scattering for the investigation of liquids under shear. Chem Phys 292(2–3):283–287CrossRefGoogle Scholar
  115. 115.
    Wolff M, Magerl A, Frick B, Zabel H (2003b) Sheared liquids explored by means of neutron scattering. J Phys Condens Matter 15:S337–S342CrossRefGoogle Scholar
  116. 116.
    Wolff M, Magerl A, Frick B, Zabel H (2003c) Understanding of lubrication with-neutrons. Schmierung verstehen mit Neutronen. Mat-wiss u Werkstofftech 34(6):568–570CrossRefGoogle Scholar
  117. 117.
    Wolff M, Scholz U, Hock R, Magerl A, Leiner V, Zabel H (2004a) Crystallization of micelles at chemically terminated interfaces. Phys Rev Lett 92(25):255501CrossRefGoogle Scholar
  118. 118.
    Wolff M, Scholz U, Hock R, Magerl A, Leiner V, Zabel H (2004b) Crystallization of micelles at chemically terminated interfaces. Phys Rev Lett 92(25):255501. DOI 10.1103/PhysRevLett.92.255501CrossRefGoogle Scholar
  119. 119.
    Wolff M, Frick B, Magerl A, Zabel H (2005a) Flow cell for neutron spectroscopy. Phys Chem Chem Phys 7(6):1262–1265CrossRefGoogle Scholar
  120. 120.
    Wolff M, Magerl A, Zabel H (2005b) Dynamics and structure in complex liquids under shear explored by neutron scattering. Phys Rev E 71(1):13CrossRefGoogle Scholar
  121. 121.
    Wolff M, Magerl A, Zabel H (2005c) Structure of polymer micelles close to the solid interface – A grazing incidence small angle neutron scattering study. Euro Phys J E 16(2):141–145CrossRefGoogle Scholar
  122. 122.
    Wolff M, Magerl A, Zabel H (2007a) NS-SANS for the investigation of micellar systems. Thin Solid Films 515:5724CrossRefGoogle Scholar
  123. 123.
    Wolff M, Zhernenkov K, Zabel H (2007b) Neutron reflectometery with ADAM at the ILL: present status and future perspectives. Thin Solid Films 515:5712CrossRefGoogle Scholar
  124. 124.
    Wolff M, Akgun B, Walz M, Magerl A, Zabel H (2008a) Slip and depletion in a Newtonian liquid. Eur Phys Lett 82:36001CrossRefGoogle Scholar
  125. 125.
    Wolff M, Akgun B, Walz M, Magerl A, Zabel H (2008b) Slip and depletion in a newtonian liquid. EPL 82(3):1–5CrossRefGoogle Scholar
  126. 126.
    Wolff M, Steitz R, Gutfreund P, Voss N, Gerth S, Walz M, Magerl A, Zabel H (2008c) Grazing incidence small-angle neutron scattering-an advanced scattering technique for the investigation of nanostructured polymer films. Langmuir 24:11331CrossRefGoogle Scholar
  127. 127.
    Wolff M, Magerl A, Zabel H (2009) Crystallization of soft crystals. Langmuir 25:64Google Scholar
  128. 128.
    Yoshizawa H, Chen YL, Israelachvili J (1993) Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J Phys Chem 97:4128CrossRefGoogle Scholar
  129. 129.
    Zeytseva NV, Goral VN, Montagna RA, Baeumner AJ (2005) Development of a microfluidic biosensor module for pathogen detection. Lab on a chip 5:805CrossRefGoogle Scholar
  130. 130.
    Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87(9):096,105Google Scholar
  131. 131.
    Zipfel J, Lindner P, Richtering W (1998) Shear-induced orientations in a lyotropic defective lamellar phase. Europhys Lett 43(6):683CrossRefGoogle Scholar
  132. 132.
    Zipfel J, Lindner P, Tsianou M, Alexandridis P, Richtering W (1999) Shear-induced formation of multilamellar vesicles (“Onions”) in block copolymers. Langmuir 15:2599CrossRefGoogle Scholar
  133. 133.
    Zorn R, Moyorova M, Richter D, Frick B (2008) Inelastic neutron scattering study of a glass-forming liquid in soft confinement. Soft Matter 4:522CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Division for Materials Physics, Department of Physics and Astronomy ScienceUppsala UniversityUppsalaSweden

Personalised recommendations