Structure and Dynamics of Polymer Nanocomposites Involving Chain-Grafted Spherical Nanoparticles

  • Peter F. GreenEmail author
  • Hyunjoon Oh
  • Pinar Akcora
  • Sanat K. Kumar
Part of the Neutron Scattering Applications and Techniques book series (NEUSCATT)


Polymer nanocomposites (PNCs), created through the incorporation of nanoparticles into polymer hosts, exhibit a diverse range of properties that are often significantly different from the polymer host. The properties, generally emergent, are derived from complex cooperative entropic and enthalpic interactions between the chains and the nanoparticles and are strongly dependent on microstructural features. A primary challenge is controlling the microstructure; one effective strategy is through grafting chains of varying grafting densities, onto the nanoparticles. This chapter discusses the morphological structure, glass transition, and the short- and long-range dynamics of mixtures of homopolymers with grafted nanoparticles. It is shown how the grafting density, particle radius, and degree of polymerization of both the grafted chains and the host profoundly influence the microstructural features of the PNC. Two fundamentally different types of morphologies are encountered in the limits of low and high grafting densities. The role of neutron scattering techniques, in combination with other characterization techniques, is shown to play an important role toward understanding the molecular mechanisms that control the structure, dynamics, and glass transition of these confined systems.


Small Angle Neutron Scattering Chain Dynamic Longe Relaxation Time Enthalpic Interaction Homopolymer Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Krishnamoorti R, Vaia RA (2007) Polymer nanocomposites. J Polymer Sci B Polymer Phys 45:3252–3256Google Scholar
  2. 2.
    Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:314–319Google Scholar
  3. 3.
    Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of Nylon 6-Clay hybrid. J Mater Res 8:1179–1184Google Scholar
  4. 4.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-Clay hybrid. J Mater Res 8:1185–1189Google Scholar
  5. 5.
    Hule RA, Pochan DJ (2007) Polymer nanocomposites for biomedical applications. MRS Bull 32:354–358Google Scholar
  6. 6.
    Njuguna B, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5:769–778Google Scholar
  7. 7.
    Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5:1694–1696Google Scholar
  8. 8.
    Putz K, Krishnamoorti R, Green PF (2007) The role of interfacial interactions in the dynamic mechanical response of functionalized SWNT-PS. Polymer 48:3540–3545Google Scholar
  9. 9.
    Jayaraman A, Schweizer KS (2008) Effective interactions, structure, and phase behaviors of lightly tethered nanoparticles in polymer melts. Macromolecules 41:9430–9438Google Scholar
  10. 10.
    Krishnamoorti R (2007) Strategies for dispersing nanoparticles in polymers. MRS Bull 32:341–347Google Scholar
  11. 11.
    Oh H, Green PF (2009) Polymer chain dynamics and glass transition in athermal polymer/ nanoparticle mixtures. Nat Mater 8:139–143Google Scholar
  12. 12.
    Meli L, Arceo A, Green PF (2009) Control of the entropic interactions and phase behavior of athermal nanoparticle/homopolymer thin film mixtures. Soft Matter 5:533–537Google Scholar
  13. 13.
    Arceo A, Meli L, Green PF (2008) Entropically directed forces on nanocrystal distribution. Nano Lett 8:2271–2276Google Scholar
  14. 14.
    Kropka JM, Sakai VG, Green PF (2008) Local polymer dynamics in polymer-C60 mixtures. Nano Lett 8:1061–1065Google Scholar
  15. 15.
    Corbierre MK, Cameron NS, Sutton M, Laaziri K, Lennox RB (2005) Gold nanoparticle/ polymer nanocomposites: dispersion of nanoparticles as a function of capping agent molecular weight and grafting density. Langmuir 21:6063–6072Google Scholar
  16. 16.
    Goel V, Chatterjee T, Bombalski L, Yurekli K, Matyjaszewski K, Krishnamoorti R (2006) Viscoelastic properties of silica-grafted Poly(styrene-acrylonitrile). J Polymer Sci B Polymer Phys 44:2014–2023Google Scholar
  17. 17.
    Harton SE, Kumar SK (2008) Mean-field theoretical analysis of brush-coated nanoparticle dispersion in polymer matrices. J Polymer Sci B Polymer Phys 46:351–358Google Scholar
  18. 18.
    Mackay ME, Tuteja A, Duxbury PM, Hawker CJ, Van Horn B, Guan ZB, Chen GH, Krishnan RS (2006) General strategies for nanoparticle dispersion. Science 311:1740–1743Google Scholar
  19. 19.
    Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830Google Scholar
  20. 20.
    Green DL, Mewis J (2006) Connecting the wetting and rheological behaviors of poly(dimethylsiloxane)-grafted silica spheres in poly(dimethylsiloxane) melts. Langmuir 22:9546–9553Google Scholar
  21. 21.
    Akcora P, Liu H, Kumar SK, Moll J, Li Y, Benicewicz BC, Schadler LS, Acehin D, Panagiotopoulos AZ, Pryamitsyn V, Ganesan V, Ilavsky J, Thiyagarajan P, Colby RH, Douglas JF (2009) Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat Mater 8:354–359Google Scholar
  22. 22.
    Li C, Han J, Ryu CY, Benicewicz BC (2006) A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39:3175–3183Google Scholar
  23. 23.
    Li CZ, Benicewicz BC (2005) Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38:5929–5936Google Scholar
  24. 24.
    Li Y, Benicewicz BC (2008) Functionalization of silica nanoparticles via the combination of surface-initiated RAFT polymerization and click reactions. Macromolecules 41:7986–7992Google Scholar
  25. 25.
    von Werne T, Patten TE (1999) Preparation of structurally well-defined polymer-nanoparticle hybrids with controlled/living radical polymerization. J Am Chem Soc 121:7409–7410Google Scholar
  26. 26.
    von Werne T, Patten TE (2001) Atom transfer radical polymerization from nanoparticles: a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/“living” radical polymerization from surfaces. J Am Chem Soc 123:7497–7505Google Scholar
  27. 27.
    Yezek L, Schartl W, Chen YM, Gohr K, Schmidt M (2003) Influence of hair density and hair length on interparticle interactions of spherical polymer brushes in a homopolymer mixture. Macromolecules 36:4226–4235Google Scholar
  28. 28.
    Hasegawa R, Aoki Y, Doi M (1996) Optimum graft density for dispersing particles in polymer melts. Macromolecules 29:6656–6662Google Scholar
  29. 29.
    Borukhov I, Leibler L (2002) Enthalpic stabilization of brush-coated particles in a polymer melt. Macromolecules 35:5171–5182Google Scholar
  30. 30.
    Bansal A, Yang HC, Li CZ, Benicewicz RC, Kumar SK, Schadler LS (2006) Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer-particle interface. J Polymer Sci B Polymer Phys 44:2944–2950Google Scholar
  31. 31.
    Hooper JB, Bedrov D, Smith GD (2008) Supramolecular self-organization in PEO-Modified C60 fullerene/water solutions: influence of polymer molecular weight and nanoparticle concentration. Langmuir 24:4550–4557Google Scholar
  32. 32.
    Matsen MW (2005) Stability of a block copolymer lamella in a strong electric field. Phys Rev Lett 95:258302Google Scholar
  33. 33.
    Wu CK, Hultman KL, O’Brien S, Koberstein JT (2008) Functional oligomers for the control and fixation of spatial organization in nanoparticle assemblies. J Am Chem Soc 130:3516–3520Google Scholar
  34. 34.
    Carrot G, El Harrak A, Oberdisse J, Jestin J, Boue F (2006) Polymer grafting from 10-nm individual particles: proving control by neutron scattering. Soft Matter 2:1043–1047Google Scholar
  35. 35.
    El Harrak A, Carrot G, Oberdisse J, Eychenne-Baron C, Boue F (2004) Surface-atom transfer radical polymerization from silica nanoparticles with controlled colloidal stability. Macromolecules 37:6376–6384Google Scholar
  36. 36.
    Gast AP, Leibler L (1986) Interactions of sterically stabilized particles suspended in a polymer solution. Macromolecules 19:686–691Google Scholar
  37. 37.
    Matsen MW, Gardiner JM (2001) Autophobic dewetting of homopolymer on a brush and entropic attraction between opposing brushes in a homopolymer matrix. J Chem Phys 115:2794–2804Google Scholar
  38. 38.
    Schrinner M, Polzer F, Mei Y, Lu Y, Haupt B, Ballauff M, Goldel A, Drechsler M, Preussner J, Glatzel U (2007) Mechanism of the formation of amorphous gold nanoparticles within spherical polyelectrolyte brushes. Macromol Chem Phys 208:1542–1547Google Scholar
  39. 39.
    Yoshikawa C, Goto A, Tsujii Y, Fukuda T, Yamamoto K, Kishida A (2005) Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38:4604–4610Google Scholar
  40. 40.
    Zheng L, Xie AF, Lean JT (2004) Polystyrene nanoparticles with anionically polymerized polybutadiene brushes. Macromolecules 37:9954–9962Google Scholar
  41. 41.
    Ferreira PG, Ajdari A, Leibler L (1998) Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules 31:3994–4003Google Scholar
  42. 42.
    Leibler L, Mourran A (1997) Wetting on grafted polymer films. MRS Bull 22:33–37Google Scholar
  43. 43.
    Xu JJ, Qiu F, Zhang HD, Yang YL (2006) Morphology and interactions of polymer brush-coated spheres in a polymer matrix. J Polymer Sci B Polymer Phys 44:2811–2820Google Scholar
  44. 44.
    Savin DA, Pyun J, Patterson GD, Kowalewski T, Matyjaszewski K (2002) Synthesis and characterization of silica-graft-polystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J Polymer Sci B Polymer Phys 40:2667–2676Google Scholar
  45. 45.
    Hooper JB, Schweizer KS (2006) Theory of phase separation in polymer nanocomposites. Macromolecules 39:5133–5142Google Scholar
  46. 46.
    Kropka JM, Putz KW, Pryamitsyn V, Ganesan V, Green PF (2007) Origin of dynamical properties in PMMA-C60 nanocomposites. Macromolecules 40:5424–5432Google Scholar
  47. 47.
    Meli L, Green PF (2008) Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly(methyl methacrylate) thin films. ACS Nano 2:1305–1312Google Scholar
  48. 48.
    Striolo A, Egorov SA (2007) Steric stabilization of spherical colloidal particles: implicit and explicit solvent. J Chem Phys 126:014902Google Scholar
  49. 49.
    Lin Y, Zhou B, Fernando KAS, Liu P, Allard LF, Sun YP (2003) Polymeric carbon nanocomposites from carbon nanotubes funtionalized with matrix polymer. Macromolecules 36:7199–7204Google Scholar
  50. 50.
    Beyer FL, Tan NCB, Dasgupta A, Galvin ME (2002) Polymer-layered silicate nanocomposites from model surfactants. Chem Mater 14:2983–2988Google Scholar
  51. 51.
    Ahn KH, Ha DH, Lee BD, Doh JG, Choi JH (2002) Effect of graft ratio on the dynamics moduli of acrylonitrile-butadiene-styrene copolymer. Polymer Eng Sci 42:605–610Google Scholar
  52. 52.
    Gong XY, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052Google Scholar
  53. 53.
    Roan JR, Kawakatsu T (2002) Self-consistent-field theory for interacting polymeric assemblies. II. Steric stabilization of colloidal particles. J Chem Phys 116:7295–7310Google Scholar
  54. 54.
    Roan J. R, (2001) Erratum: attraction between nanoparticles induced by end-grafted homopolymers in good solvents Phys Rev Lett 86:87059902Google Scholar
  55. 55.
    Roan JR (2001) Attraction between nanoparticles induced by end-grafted homopolymers in good solvents. Phys Rev Lett 86:1027–1030Google Scholar
  56. 56.
    Gohr K, Schartl W (2000) Dynamics of copolymer micelles in a homopolymer melt: influence of the matrix molecular weight. Macromolecules 33:2129–2135Google Scholar
  57. 57.
    Gohr K, Pakula T, Tsutsumi K, Schartl W (1999) Dynamics of copolymer micelles in an entangled homopolymer mixture. Macromolecules 32:7156–7165Google Scholar
  58. 58.
    Aoki Y (1987) Dynamic viscoelastic properties of abs polymers in the molten state. 5. Effect of Grafting Degree. Macromolecules 20:2208–2213Google Scholar
  59. 59.
    Aoki Y, Nakayama K (1982) Dynamic viscoelastic properties of abs polymers in the molten state IV. Effect of rubber particle size. Polymer J 14:951–958Google Scholar
  60. 60.
    Goel V, Pietrasik J, Dong H, Sharma J, Matyjaszewski K, Krishnamoorti R (2010) Ind Eng Chem Res 49:11985–11990Google Scholar
  61. 61.
    Morinaga T, Ohno K, Tsujii Y, Fukuda T (2008) Structural analysis of “semisoft” colloidal crystals by confocal laser scanning microscopy. Macromolecules 41:3620–3626Google Scholar
  62. 62.
    Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T (2007) Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 40:9143–9150Google Scholar
  63. 63.
    Ohno K, Morinaga T, Takeno S, Tsujii Y, Fukuda T (2006) Suspensions of silica particles grafted with concentrated polymer brush: a new family of colloidal crystals. Macromolecules 39:1245–1249Google Scholar
  64. 64.
    Lee JY, Balazs AC, Thompson RB, Hill RM (2004) Self-assembly of amphiphilic nanoparticle-coil “Tadpole” macromolecules. Macromolecules 37:3536–3539Google Scholar
  65. 65.
    Georgakilas V, Pellarini F, Prato M, Guldi DM, Melle-Franco M, Zerbetto F (2002) Supramolecular self-assembled fullerene nanostructures. Proc Natl Acad Sci USA 99:5075–5080Google Scholar
  66. 66.
    Zhou SQ, Burger C, Chu B, Sawamura M, Nagahama N, Toganoh M, Hackler UE, Isobe H, Nakamura E (2001) Spherical bilayer vesicles of fullerene-based surfactants in water: a laser light scattering study. Science 291:1944–1947Google Scholar
  67. 67.
    Ravi P, Dai S, Hong KM, Tam KC, Gan LH (2005) Self-assembly of C60 containing polymer(methyl methacrylate) in ethyl acetate/decalin mixtures solvent. Polymer 46:4714–4721Google Scholar
  68. 68.
    Bedrov D, Smith GD, Li LW (2005) A molecular dynamics simulation study of the role of evenly-spaced poly(ethylene oxide) tethers on the aggregation of C60 fullerenes in water. Langmuir 21:5251–5255Google Scholar
  69. 69.
    Song T, Dai S, Tam KC, Lee SY, Goh SH (2003) Aggregation behavior of two-arm fullerene-containing poly(ethylene oxide). Polymer 44:2529–2536Google Scholar
  70. 70.
    Ravi P, Dai S, Wang C, Tam KC (2007) Fullerene-containing polymers: a review on their synthesis and supramolecular behavior in solution. J Nanosci Nanotechnol 7:1176–1196Google Scholar
  71. 71.
    Bansal A, Yang HC, Li CZ, Cho KW, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693–698Google Scholar
  72. 72.
    Fredrickson GH, Bates FS (1996) Dynamics of block copolymers: theory and experiment. Annu Rev Mater Sci 26:501–550Google Scholar
  73. 73.
    Tuteja A, Duxbury PM, Mackay ME (2007) Multifunctional nanocomposites with reduced viscosity. Macromolecules 40:9427–9434Google Scholar
  74. 74.
    Desai T, Keblinski P, Kumar SK (2005) Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 122, 134910:10–18Google Scholar
  75. 75.
    Pryamitsyn V, Ganesan V (2006) Mechanisms of steady-shear rheology in polymer-nanoparticle composites. J Rheol 50:655–683Google Scholar
  76. 76.
    Pryamitsyn V, Ganesan V (2006) Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39:844–856Google Scholar
  77. 77.
    Anastasiadis SH, Karatasos K, Vlachos G, Manias E, Giannelis EP (2000) Nanoscopic-confinement effects on local dynamics. Phys Rev Lett 84:915–918Google Scholar
  78. 78.
    Tsagaropoulos G, Eisenberg A (1995) Dynamic mechanical study of the factors affecting the two glass transition behavior of filled polymers. similarities and difference with random ionomers. Macromolecules 28:6067–6077Google Scholar
  79. 79.
    Tsagaropoulos G, Eisenberg A (1995) Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers. Macromolecules 28:396–398Google Scholar
  80. 80.
    Starr FW, Schroder TB, Glotzer SC (2001) Effect of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. Phys Rev E 64:021802Google Scholar
  81. 81.
    Doi ME, Edwards SF (1986) Theory of polymer dynamics. Oxford University Press, OxfordGoogle Scholar
  82. 82.
    Green PF (2005) Kinetics transport and structure in hard and soft materials. CRC, New YorkGoogle Scholar
  83. 83.
    McLeish TCB (2002) Tube theory of entangled Polymer dynamics. Adv Polymer Sci 51:1379Google Scholar
  84. 84.
    Salaniwal S, Kumar SK, Douglas JF (2002) Amorphous solidification in polymer-platelet nanocomposites. Phys Rev Lett 89:258301Google Scholar
  85. 85.
    Sen S, Thomin JD, Kumar SK, Keblinski P (2007) Molecular underpinnings of the mechanical reinforcement in polymer nanocomposites. Macromolecules 40:4059–4067Google Scholar
  86. 86.
    Berriot J, Montes H, Lequeux F, Long D, Sotta P (2002) Evidence for the shift of the glass transition near the particles in silica-filled elastomers. Macromolecules 35:9756–9762Google Scholar
  87. 87.
    Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der waals liquids, in the bulk and in thin films. Eur J Phys Educ 4:371–387Google Scholar
  88. 88.
    Gabryś B, Higgins JS, Ma KT, Roots JE (1984) Rotational motion of the ester methyl group in stereoregular poly)methyl methacrylate):a neutron scattering study. Macromolecules 17:560–566Google Scholar
  89. 89.
    Moreno AJ, Alegría A, Colmenero J, Frick B (2001) Methyl group dynamics in poly(methyl methacrylate): from quantum tunneling to classical hopping. Macromolecules 34:4886–4896Google Scholar
  90. 90.
    Nicholson TM, Davies GR (1997) Modeling of methyl group rotations in PMMA. Macromolecules 30:5501–5505Google Scholar
  91. 91.
    Akcora P, Kumar SK, García Sakai V, Li Y, Benicewicz BC, Schadler LS (2010) Segmental dynamics in pmma-grafted nanoparticle composites. Macromolecules 43:8275–8281Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Peter F. Green
    • 1
    Email author
  • Hyunjoon Oh
    • 1
  • Pinar Akcora
    • 2
  • Sanat K. Kumar
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Chemical EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations